МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Физический факультет
УТВЕРЖДЕНО
решением Ученого совета ННГУ
протокол № 6 от 31.05.2023 г
Рабочая программа дисциплины
 Избранные главы физики
Уровень высшего образования Бакалавриат
Направление подготовки / специальность 11.03.04 - Электроника и наноэлектроника
Направленность образовательной программы Радиофотоника и оптоэлектроника
Форма обучения
очная

г. Нижний Новгород

2021 год начала подготовки

1. Место дисциплины в структуре ОПОП

Дисциплина Б1.В.11 Избранные главы физики относится к части, формируемой участниками образовательных отношений образовательной программы.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

Формируемые	Планируемые результат	ы обучения по дисциплине	Наименование оце	ночного средства
компетенции	(модулю), в соответ	гствии с индикатором		
(код, содержание	достижения компетенци	И		
компетенции)	Индикатор достижения	Результаты обучения	Для текущего	Для
	компетенции	по дисциплине	контроля	промежуточной
	(код, содержание		успеваемости	аттестации
ПИ 1. С	индикатора)	ПК-1.1:	Задачи	
ПК-1: Способность применять	ПК-1.1: Знает физические		Заоачи	
фундаментальные	явления и процессы,	Уметь применять знания о		Зачёт:
представления о	лежащие в основе работы	физических явлениях и		Задачи
физических явлениях	приборов и устройств	процессах для выработки		Тест
для достижения	электроники и	решения профессиональных		
требуемых	наноэлектроники	задач.		
функциональных	ПК-1.2: Умеет применять	Знать фундаментальные		
качеств приборов, схем и устройств	фундаментальные	понятия, законы и модели		
электроники и	представления о физических	атомной физики. Знать о		
наноэлектроники	явлениях и процессах для	физических явлениях, лежащих		
<i>p</i>	достижения требуемых	в основе формирования		
	функциональных качеств	химической связи в		
	приборов и устройств	материалах, являющихся		
	электроники и	основой для приборов и		
	наноэлектроники	устройств электроники и		
		наноэлектроники.		
		Владеть навыками		
		построения модели		
		протекания процессов в		
		твердом теле		
		ПК-1.2:		
		Уметь применять полученные		
		знания для достижения		
		требуемых функциональных		
		качеств приборов и		
		устройств электроники и		
		наноэлектроники.		
		Знать методы, необходимые		
		для решения прикладных задач		
		Владеть понятийным и		
		математическим аппаратом		
		для решения		
		профессиональных прикладных		
		задач.		

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

	очная
Общая трудоемкость, з.е.	3
Часов по учебному плану	108
в том числе	
аудиторные занятия (контактная работа):	
- занятия лекционного типа	32
- занятия семинарского типа (практические занятия / лабораторные работы)	32
- КСР	1
самостоятельная работа	43
Промежуточная аттестация	0
	зачёт

3.2. Содержание дисциплины

(структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий)

Наименование и краткое содержание разделов и тем дисциплины	Всего		в том ч	исле	
	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы из них			
		Занятия лекционного типа	Занятия семинарского типа (практические занятия/лабора торные работы), часы	Всего	Самостоятельная работа обучающегося, часы
	о ф о	о ф о	о ф о	о ф о	о ф о
Основные параметры атомов.	7	2	2	4	3
Проблема теплового излучения. Фотоны.	7	2	2	4	3
Волновые свойства массивных частиц. Соотношения неопределенностей.	7	2	2	4	3
Планетарная модель атома. Постулаты Бора.	7	2	2	4	3
Волновая функция, операторы физических величин, уравнение Шредингера.	7	2	2	4	3
Атом водорода. Многоэлектронные атомы.	7	2	2	4	3
Периодическая таблица химических элементов Менделеева. Атомные термы и оптические спектры атомов.	9	2	4	6	3
Рентгеновские лучи. Атомы во внешних электрическом и магнитном полях. Молекулы и химическая связь.	7	2	2	4	3
Колебания одномерной атомной цепочки. Кристалл. Теория Друдэ. Понятие о структуре тетраэдрических кристаллов.	6	2	2	4	2
Основные сведения из квантовой механики. Положения квантовой механики. Электронные состояния в атоме. Электронные состояния малых молекул. Простая ионно-ковалентная связь. Двухатомная молекула.	6	2	2	4	2
Энергетические зоны. Метод ЛКАО. Типы твердых тел.	6	2	2	4	2
Зонная структура простых тетраэдрических кристаллов. Понятие связывающих орбиталей. Конструирование орбиталей. Расчет энергетических зон.	8	2	2	4	4
Особенности спектра поглощения. Влияние типа химической связи на свойства полупроводников.	6	2	2	4	2

Применение явлений переноса для исследования зонной структуры. Осцилляции физических параметров в магнитном поле. Магнитооптические явления. Методы исследования зонной структуры. Циклотронный резонанс. Ультрафиолетовая фотоэлектронная спектроскопия.	6	2	2	4	2
Систематические характеристики ядер. Динамические характеристики атомных ядер. Радиоактивное превращение атомных ядер. Возбуждение и превращения атомных ядер в процессах ядерных реакций.	7	2	2	4	3
Ядерные силы и ядерные модели. Основные виды элементарных частиц, их свойства, полуфеноменологическая систематизация.	4	2	0	2	2
Аттестация	0				
KCP	1			1	
Итого	108	32	32	65	43

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

1) Полупроводниковые гетероструктуры: гетеропереход. Учебно-методическое пособие. /Сост. П.А. Шиляев, Д.А. Павлов. – Н.Новгород: Нижегородский госуниверситет, 2009. – 18 с. http://www.nanotech.unn.ru/sites/default/files/13_semiconductors_heterotransition.pdf

5. Фонд оценочных средств для текущего контроля успеваемости и промежуточной аттестации по дисциплине (модулю)

5.1 Типовые задания, необходимые для оценки результатов обучения при проведении текущего контроля успеваемости с указанием критериев их оценивания:

5.1.1 Типовые задания (оценочное средство - Задачи) для оценки сформированности компетенции ПК-1

- 1. Альфа-частица с кинетической энергией 0,37 МэВ рассеялась золотой фольгой на угол 70°. Найти соответствующее значение прицельного параметра.
- 2. Альфа-частица с кинетической энергией T = 0.70 МэВ рассеялась под углом $\theta = 90^{\circ}$ на кулоновском поле неподвижного ядра атома ртути. Найти: а) наименьший радиус кривизны ее траектории; б) минимальное расстояние, на которое она сблизилась с ядром.
- 3. Протон с кинетической энергией T = 15 МэВ пролетает на расстоянии b = 10 пм от свободного покоившегося электрона. Найти энергию, которую получит электрон, считая, что траектория протона прямолинейная и за время пролета электрон остается практически неподвижным.
- 4. Найти эффективное сечение ядра атома урана, соответствующее рассеянию α -частиц с кинетической энергией $T=1.5~\mathrm{M}$ в интервале углов свыше $90=60^\circ$.
- 5. Какой серии принадлежит спектральная линия атомарного водорода, волновое число которой равно разности волновых чисел следующих двух линий серии Бальмера: 486,1 и 410,2 нм? Какова длина волны этой линии?
- 6. Сколько спектральных линий будет испускать атомарный водород, который возбуждают на n-й энергетический уровень?
- 7. Найти квантовое число n, соответствующее возбужденному состоянию иона He+, если при переходе в основное состояние этот ион испустил последовательно два фотона с длинами волн 108,5 и 30,4 нм.
- 8. Найти энергию связи электрона в основном состоянии водородоподобных ионов, в спектре которых длина волны третьей линии серии Бальмера равна 108,5 нм.
- 9. Найти скорость фотоэлектронов, вырываемых электромагнитным излучением с длиной

- волны $\lambda = 18,0$ нм из ионов He⁺, которые находятся в основном состоянии и покоятся.
- 10.Согласно постулату Бора Зоммерфельда при периодическом движении частицы в потенциальном поле должно выполняться следующее правило квантования: $\int p \, dr = 2\pi h n$, где p импульс частицы, dr ее элементарное перемещение, n целые числа. Воспользовавшись этим правилом, найти разрешенные значения энергии частицы массы m, которая движется: a) в одномерной прямоугольной потенциальной яме ширины 1 с бесконечно высокими стенками; b0 по окружности радиуса b1; b2 в одномерном потенциальном поле b3 где потенциальная постоянная; b4 где положительная постоянная.
- 11. Вычислить дебройлевские длины волн электрона, протона и атома урана, имеющих одинаковую кинетическую энергию 100 эВ.
- 12. Нейтрон с кинетической энергией T=25 эВ налетает на покоящийся дейтон (ядро тяжелого водорода). Найти дебройлевские длины волн обеих частиц в системе их центра инерции.
- 13.Вычислить наиболее вероятную дебройлевскую длину волны молекул водорода, находящихся в термодинамическом равновесии при комнатной температуре.
- 14. Параллельный поток электронов, ускоренных разностью потенциалов U=25~B, падает нормально на диафрагму с двумя узкими щелями, расстояние между которыми d=50~мкм. Определить расстояние между соседними максимумами дифракционной картины на экране, расположенном на расстоянии l=100~cm от щелей.
- 15. Узкий пучок электронов с кинетической энергией T=10 кэВ проходит через поликристаллическую алюминиевую фольгу, образуя на экране систему дифракционных колец. Вычислить межплоскостное расстояние, соответствующее отражению третьего порядка от некоторой системы кристаллических плоскостей, если ему отвечает дифракционное кольцо диаметра D=3,20 см. Расстояние между экраном и фольгой 1=10,0 см.
- 16.Интерпретировать квантовые условия Бора на основе волновых представлений: показать, что электрон в атоме водорода может двигаться только по тем круговым орбитам, на которых укладывается целое число дебройлевских волн.
- 17. Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию электрона, локализованного в области размером 1 = 0,20 нм.
- 18. Частица массы m движется в одномерном потенциальном поле $U = kx^2/2$ (гармонический осциллятор). Оценить c помощью соотношения неопределенностей минимально возможную энергию частицы в таком поле.
- 19. Частица массы m находится в трехмерной кубической потенциальной яме с абсолютно непроницаемыми стенками. Сторона куба равна а. Найти: а) собственные значения энергии частицы; б) разность энергий 3-го и 4-го уровней; в) энергию 6-го уровня и соответствующее ему число состояний (кратность вырождения).

Критерии оценивания (оценочное средство - Задачи)

Оценка	Критерии оценивания
зачтено	Решено половина или более задач, заданных в течение семестра.
не зачтено	Решено менее половины задач, заданных в течение семестра.

5.2. Описание шкал оценивания результатов обучения по дисциплине при промежуточной аттестации

Шкала оценивания сформированности компетенций

		пкала оценит	minim equip	pobum	ocin nomin	- тенции	
Уровен ь сформи рованн ости компет	плохо	неудовлетвор ительно	удовлетво рительно	хорошо	очень хорошо	отлично	превосходно
енций (индик атора достиж ения компет енций)	не зач	тено	зачтено				
<u>Знания</u>	Отсутствие знаний теоретического материала. Невозможность оценить полноту знаний вследствие отказа обучающегося от ответа	Уровень знаний ниже минимальных требований. Имели место грубые ошибки	Минимальн о допустимы й уровень знаний. Допущено много негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько несуществе нных ошибок	Уровень знаний в объеме, соответств ующем программе подготовк и. Ошибок нет.	Уровень знаний в объеме, превышающе м программу подготовки.
<u>Умения</u>	Отсутствие минимальных умений. Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы основные умения. Имели место грубые ошибки	Продемонс трированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания, но не в полном объеме	Продемонс трированы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания в полном объеме, но некоторые с недочетами	Продемонс трированы все основные умения. Решены все основные задачи. Выполнены все задания в полном объеме, но некоторые с недочетами .	Продемонс трированы все основные умения. Решены все основные задачи с отдельным и несуществ енными недочетам и, выполнен ы все задания в полном объеме	Продемонстр ированы все основные умения. Решены все основные задачи. Выполнены все задания, в полном объеме без недочетов
<u>Навыки</u>	Отсутствие базовых навыков. Невозможность оценить наличие навыков вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы базовые навыки. Имели место грубые ошибки	Имеется минимальн ый набор навыков для решения стандартны х задач с некоторым и недочетами	Продемонс трированы базовые навыки при решении стандартны х задач с некоторым и недочетами	Продемонс трированы базовые навыки при решении стандартны х задач без ошибок и недочетов	Продемонс трированы навыки при решении нестандарт ных задач без ошибок и недочетов	Продемонстр ирован творческий подход к решению нестандартны х задач

Оценка		Уровень подготовки				
	превосходно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «превосходно», продемонстрированы знания, умения, владения по соответствующим компетенциям на уровне выше предусмотренного программой				
	отлично	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично».				
зачтено	очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо»				
	хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо».				
удовлетворитель Все компетенции (части компетенций), на формирование которых направи сформированы на уровне не ниже «удовлетворительно», при этом компетенция сформирована на уровне «удовлетворительно»						
неудовлетворите хотя бы одна компетенция сформирована на уровне «неудовлетворительно».						
не зачтено						
	плохо	Хотя бы одна компетенция сформирована на уровне «плохо»				

5.3 Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения на промежуточной аттестации

5.3.1 Типовые задания, выносимые на промежуточную аттестацию:

Оценочное средство - Задачи

Зачёт

Критерии оценивания (Задачи - Зачёт)

Оценка	Критерии оценивания
зачтено	Решена более двух контрольных задач.
не зачтено	Решено менее двух контрольных задач.

Типовые задания (Задачи - Зачёт) для оценки сформированности компетенции ПК-1 (Способность применять фундаментальные представления о физических явлениях для достижения требуемых функциональных качеств приборов, схем и устройств электроники и наноэлектроники)

- 1. Волновая функция частицы массы m для основного состояния в одномерном потенциальном поле $U(x) = kx^2/2$ имеет вид $\psi = Ae^{-\alpha x^2}$, где A нормировочный коэффициент, α положительная постоянная. Найти с помощью уравнения Шрёдингера постоянную α и энергию E частицы в этом состоянии.
- 2. Волновая функция электрона в основном состоянии атома водорода имеет вид $\psi(r) = Ae^-$

- r/r^1 , где A некоторая постоянная, r^1 первый боровский радиус. Найти: а) наиболее вероятное расстояние между электроном и ядром; б) среднее значение модуля кулоновской силы, действующей на электрон; в) среднее значение потенциальной энергии электрона в поле ядра.
- 3. Энергия связи валентного электрона атома лития в состояниях 2S и 2P равна соответственно 5,39 и 3,54 эВ. Вычислить ридберговские поправки для S- и P-термов этого атома.
- 4. Найти возможные значения полных механических моментов атомов, находящихся в состояниях 4 P и 5 D.
- 5. Атом находится в состоянии, мультиплетность которого равна трем, а полный механический момент $h \times \operatorname{sqrt}(20)$. Каким может быть соответствующее квантовое число L?
- 6. Написать с помощью правил Хунда спектральный символ основного терма атома, единственная незаполненная подоболочка которого заполнена: a) на 1/3, и S=1; б) на 70%, и S=3/2.
- 7. Найти напряжение на рентгеновской трубке с никелевым антикатодом, если разность длин волн Кα-линии и коротковолновой границы сплошного рентгеновского спектра равна 84 пм.
- 8. Вычислить фактор Ланде для следующих термов: а) ${}^{6}F_{1/2}$; б) ${}^{4}D_{1/2}$; в) ${}^{5}F_{2}$; г) ${}^{5}P_{1}$; д) ${}^{3}P_{0}$.
- 9. Валентный электрон атома натрия находится в состоянии с главным квантовым числом n = 3, имея при этом максимально возможный полный механический момент. Каков его магнитный момент в этом состоянии?
- 10. На сколько подуровней расщепится в слабом магнитном поле терм: a) 3 P0; б) 2 F5/2; в) 4 D1/2?
- 11.Какой эффект Зеемана (простой, сложный) обнаруживают в слабом магнитном поле спектральные линии, обусловленные следующими переходами: a) $^{1}P \rightarrow ^{1}S$; б) $^{2}D_{5/2} \rightarrow ^{2}P_{3/2}$; в) $^{3}D_{1} \rightarrow ^{3}P_{0}$; г) $^{5}I_{5} \rightarrow ^{5}H_{4}$?
- 12.Зная постоянную распада λ ядра, определить: а) вероятность того, что оно распадется за промежуток времени от 0 до t; б) его среднее время жизни τ .
- 13.Сколько β-частиц испускает в течение одного часа 1,0 мкг изотопа Na²⁴, период полураспада которого равен 15 ч?
- 14. Найти постоянную распада и среднее время жизни радиоактивного изотопа ${
 m Co}^{55}$, если известно, что его активность уменьшается на 4.0% за час? Продукт распада нерадиоактивен.
- 15.Нейтрон испытал упругое соударение с первоначально покоившимся дейтоном. Определить долю кинетической энергии, теряемую нейтроном: а) при лобовом соударении; б) при рассеянии под прямым углом.
- 16.Определить значение максимально возможного угла, на который рассеивается дейтон при упругом соударении с первоначально покоившимся протоном.

Оценочное средство - Тест

Зачёт

Критерии оценивания (Тест - Зачёт)

Оценка	Критерии оценивания
зачтено	Дано 5 или более правильных ответов на 10 тестовых вопросов.
не зачтено	Дано менее 5 правильных ответов на 10 тестовых вопросов.

Типовые задания (Тест - Зачёт) для оценки сформированности компетенции ПК-1

(Способность применять фундаментальные представления о физических явлениях для достижения требуемых функциональных качеств приборов, схем и устройств электроники и наноэлектроники)

- 1) Квант света это...
- а) фотон б) фонон г) магнон д) полярон.
- 2) Главное квантовое число определяет ...
- а) энергетический уровень электрона б) орбитальный момент электрона в) проекцию орбитального момента г) ничего не определяет.
- 3) Энергетический спектр электронов в кристалле является ...
- а) дискретным б) непрерывным г) квазинепрерывным д) комбинированным
- 4) Для кристаллической структуры алмаза, формируемой атомами углерода, характерна ...-гибридизация.
- a) sp^2 6) sp^3 , B) sp, Γ) sp^4 .

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

Основная литература:

- 1. Фаддеев Михаил Андреевич. Лекции по атомной физике: учеб. для студентов вузов, обучающихся по специальностям 010400 физика и 010600 физика конденсир. состояния вещества и по направлению 510400 физика. М.: Физматлит, 2008. 612 с. ISBN 9785-94052-162-4: 242.00., 97 экз.
- 2. Матвеев Алексей Николаевич. Квантовая механика и строение атома: [учеб. пособие для пед. вузов]. М.: Высшая школа, 1965. 355 с.: ил. 0.74., 1 экз.
- 3. Цидильковский Исаак Михайлович. Зонная структура полупроводников / И. М. Цидильковский.
- Москва: Наука, 1978. 328 с.: ил. 1.60., 1 экз.
- 4. Зеегер К. Физика полупроводников : пер. с англ. Р. Бразиса [и др.] / под ред. Ю. К. Пожелы. М. : Мир, 1977. 615 с. : ил. 2.90., 14 экз.
- 5. Широков Юрий Михайлович. Ядерная физика: [учеб. пособие для физ. специальностей вузов]. 2-е изд., перераб. М.: Наука, 1980. 727 с.: ил. (Общий курс физики). 1.80., 29 экз.

Дополнительная литература:

- 1. Зеегер К. Физика полупроводников : пер. с англ. Р. Бразиса [и др.] / под ред. Ю. К. Пожелы. М. : Мир, 1977. 615 с. : ил. 2.90., 14 экз.
- 2. Краснов Константин Соломонович. Молекулы и химическая связь: [учеб. пособие для хим.-

технол. специальностей вузов]. - 2-е изд., перераб. и доп. - М. : Высшая школа, 1984. - 295 с. : ил. - 1.00., 32 экз.

Программное обеспечение и Интернет-ресурсы (в соответствии с содержанием дисциплины):

Открытый проект Materials Project https://www.materialsproject.org/.

7. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащены мультимедийным оборудованием (проектор, экран), техническими средствами обучения.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду.

Программа составлена в соответствии с требованиями ОС ННГУ по направлению 11.03.04 - Электроника и наноэлектроника.

Автор(ы): Крюков Руслан Николаевич, кандидат физико-математических наук.

Рецензент(ы): Бурдов Владимир Анатольевич, доктор физико-математических наук.

Заведующий кафедрой: Павлов Дмитрий Алексеевич, доктор физико-математических наук.

Программа одобрена на заседании методической комиссии от 20.05.2023, протокол № б/н.