МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

	Радиофизический факультет			
(6	ракультет / институт / филиал)			
		7	УТВЕРЖД <i>Е</i>	АЮ:
	Декан		Матросов	B.B.
	« <u>29</u>		кнони	_ 2020
Рабочая	программа дисципл	ины		
	редства телекоммуникационнименование дисциплины (модуля))	ных систем	<u> </u>	
Уров	ень высшего образования	·		
	специалитет			
(бака.	павриат / магистратура / специалитет)			
На	правление подготовки			
	ная безопасность телекоммун	икационн	ых систем»	,
(указывается код и на	именование направления подготовки / с	специальност	и)	
Направленно	ость образовательной про	граммы		
(указывается про	филь / магистерская программа / специа	ализация)		
Kı	залификация (степень)			
	специалист			
(бакалавр / магистр / специалист)			
	Форма обучения			
	очная			
	(очная / очно-заочная / заочная)			

Γ.

Нижний Новгород

1. Место и цели дисциплины в структуре ОПОП

Дисциплина относится к базовой части профессионального цикла ОПОП и обязательна для освоения на третьем году обучения в пятом семестре.

Целью освоения дисциплины

«Аппаратные средства телекоммуникационных систем» является приобретение знаний о цифровых устройствах (включая элементную базу), на основе которых строятся цифровые вычислительные системы, в том числе системы, используемые в научных и экспериментальных исследованиях, в системах связи, телекоммуникационных системах и в системах автоматического управления.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции Код компетенции (код компетенции, этап формирования)	Планируемые результаты обучения по дисципли- не, характеризующие этапы формирования ком- петенций
ОПК-6 этап формирования начальный	O1 (ОПК-6) – способностью применять методы на- учных исследований в профессиональной дея- тельности.
ПК-4 этап формирования базовый	O1 (ПК-4) — обладание способностью участвовать в разработке компонентов телекоммуникационных систем.

3. Структура и содержание дисциплины

Объем дисциплины составляет 3 зачетные единицы, всего 108 часов, из которых 65 часов составляет контактная работа обучающегося с преподавателем (32 часа занятия лекционного типа, 32 часа занятия лабораторного типа, в том числе 2 часа — мероприятия текущего контроля успеваемости, 1 час — мероприятия промежуточной аттестации), 43 часа составляет самостоятельная работа обучающегося.

									В то	м чис	ле							
Наименование и	<u> </u>		К	Контактная работа (работа во взаимодействии с преподавателем), часы из них														
наименование и краткое содержание разделов и тем дисциплины (модуля), форма промежуточ-		Всего (часы)		Занятия лекционного типа		C	Занятия семинарского типа Занятия		Занятия лабораторного типа		Всего			Самостоятельная ра бота обучающегося, часы				
ной аттестации по дисциплине (модулю)	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное
Тема 1. Общее представление о принципе действия, функциональном составе и архитектуре цифровых вычислительных систем.	1			1									1					
Тема 2. Функциональные узлы комбинационного типа.	6	4		6									6			4		
Тема 3. Функциональные узлы последовательного типа (автоматы с памятью).	8	8		8									8			8		
Тема 4. Запоминающие устройства.	4	6		4									4			6		
Тема 5. Микропроцессоры: архитектура и структурное построение.	23	12		7						16			23			12		
Тема 6. Микропроцессорные системы.	20	13		4						16			20			13		
Тема 7. Обзор микропроцессорных систем и средств вычислительной техники.	2			2									2					
В.т.ч. текущий кон- троль	2									2			2					
Промежуточн	ая а	аттест	гация	1 — 3a	чёт													

4. Образовательные технологии

Изучение дисциплины сопровождается лабораторным практикумом, в рамках которого осваивается система автоматического проектирования (САПР), направленная на разработку программного обеспечения для систем реального времени. Для этой цели используются соответствующая среда разработки на персональном компьютере и подключённая к компьютеру целевая система в виде платы с микроконтроллером и устройствами ввода/вывода. Освоение САПР и её взаимодействия с целевой системой происходит под руководством преподавателя.

Выполняются две лабораторные работы:

Наименование лабораторной работы	Раздел дисциплины
Знакомство с микроконтроллером серии MSP-430	5

Первые шаги в программировании микроконтрол-	5.6
лера серии MSP-430	5, 0

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся обеспечена учебными пособиями и методическими разработками для лабораторных работ. Учебно-методические разработки содержат необходимый для контроля освоения дисциплины перечень вопросов, по ответам на которые в процессе выполнения лабораторных работ производится контроль приобретённых знаний. Кроме того, каждый студент оформляет отчёт по выполненной работе, в котором содержится объяснение технологии программирования целевой системы с привлечением преподаваемого в лекциях материала.

6. Фонд оценочных средств для промежуточной аттестации по дисциплине

6.1. Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования

Дисциплина «Аппаратные средства телекоммуникационных систем» участвует в формировании компетенций ОПК-6 и ПК-4. Формирование компетенций распределено по всем разделам лекций. В результате обучающийся приобретает способность:

- (1) использовать элементную базу, языки, системы и инструментальные средства программирования в профессиональной деятельности,
- (2) применять современные методы исследования с применением компьютерной техники,
- (3) выполнять разработку цифровых функциональных блоков телекоммуникационных систем на основе современной элементной базы и с применением стандартных пакетов автоматизированного проектирования,
- (4) участвовать в разработке компонентов телекоммуникационных систем,
- (5) осуществлять рациональный выбор элементной базы обеспечения информационной безопасности телекоммуникационных систем,

Компетенции ОПК-6 и ПК-4 формируются также в ходе выполнения лабораторных работ. Компетенции оцениваются по ответам на контрольные вопросы при допуске к лабораторным работам и в ходе их выполнения, а также по письменному отчёту, завершающему выполнение лабораторной работы. Заключительная оценка качества формирования компетенций происходит по итоговому «зачтено» или «не зачтено».

Оценка сформированности компетенций происходит в соответствии с таблицей индикаторов.

Индика- торы	ОЦЕНКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ						
компе-	плохо	неудовле- твори- тельно	удовле- твори- тельно	хорошо	Очень хорошо	отлично	превос- ходно

		Отсутствие	Уровень зна-	Минималь-	Уровень	Уровень зна-	Уровень	Уровень
		знаний тео-	ний ниже	но допусти-	знаний в	ний в объеме,	знаний в	знаний в
		ретического	минимальных			соответст-	объеме, со-	объеме,
_		материала.	требований.	вень знаний.	ответст-	вующем про-	ответст-	превышаю-
3	<u>нания</u>	Невозмож-	Имели место	Допущено	вующем	грамме под-	вующем	щем про-
		ность оце-	грубые ошиб-	много не-	программе	готовки. До-	программе	грамму под-
		нить полно-	ки.	грубых	подготовки.	пущено не-	подготовки,	готовки.
		ту знаний		ошибок.	Допущено	сколько не-	без ошибок.	
		из-за отказа			несколько	существен-		
		от ответа.			негрубых	ных ошибок.		
					ошибок.			

<u>Умения</u>	Отсутствие минималь- ных умений. Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	стандартных задач не про- демонстриро- ваны основ- ные умения. Имели место	стрированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания	стрированы все основ- ные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания,	Продемонстрированы все основные умения. Решены все основные задачи. Выполнены все задания, в полном объеме, но некоторые с	стрированы все основ- ные умения, решены все основные задачи с отдельными несущест- венными недочетами,	Продемон- стрированы все основ- ные умения. Решены все основные задачи. Вы- полнены все задания, в полном объеме без
Навыки	Отсутствие владения материалом. Невозможно оценить наличие навыков вследствие отказа обучающегося от ответа	стандартных задач не про- демонстриро- ваны базовые	но не в полном объеме. Имеется минимальный набор навыков для решения стандартных задач с некоторыми недочетами	в полном объеме, но некоторые с недочетами. Продемонстрированы базовые навыки при решении стандартных задач с некоторыми недочетами	Продемонстрированы базовые навыки при решении стандартных задач без ошибок и недочетов.	выполнены все задания в полном объеме. Продемонстрированы навыки при решении нестандартных задач без ошибок и недочетов.	Продемон- стрирован творческий подход к решению нестандарт- ных задач
Шкала оценок по проценту правильно выполненных контрольных заданий	0 – 20 %	20 – 50 %	50 – 70 %	70-80 %	80 – 90 %	90 – 99 %	100%

6.2. Описание шкал оценивания

Зачтено	«Зачтено» ставится в том случае, если студент на понятийном уровне может дать ответы на вопросы, сформулированные в п.п. 6.3.
Не зачтено	В противном случае ставится «Не зачтено».

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине, характеризующих этапы формирования компетенций

Для оценивания результатов обучения в виде знаний используется правильность ответов на следующие вопросы:

- 1. Теоремы и аксиомы алгебры логики.
- 2. Принцип использования полупроводниковых диодов для выполнения логических операций.
- 3. Принцип использования транзисторов для выполнения логических операций.
- 4. Перечислить типы базовых логических элементов, в которых логические операции выполняются с помощью диодов.
- 5. Перечислить типы базовых логических элементов, в которых логические операции выполняются с помощью биполярных транзисторов.
- 6. Перечислить типы базовых логических элементов, в которых логические операции выполняются с помощью полевых транзисторов.
- 7. Полный дешифратор и его роль в выполнении логических операций.
- 8. Программируемые логические матрицы (ПЛМ) и их структурное построение.

- 9. Логика работы одноразрядного двоичного сумматора.
- 10. Принцип построения матричного умножителя.
- 11. Мультиплексор и его роль в выполнении логических выражений.
- 12. Основные свойства и область применения комбинационных схем.
- 13. Основные отличительные черты устройств последовательного типа (цифровых автоматов).
- 14. Признаки, по которым классифицируются триггеры. Разновидности триггеров.
- 15. Двоичные счетчики и их разновидности.
- 16. Регистры их разновидности и структурный состав.
- 17. Принцип работы регистрового арифметическо-логического устройства.
- 18. Структурный состав оперативного запоминающего устройства (ОЗУ).
- 19. Статическое ОЗУ. Статические запоминающие элементы и структурное построение ОЗУ.
- 20. Динамическое ОЗУ. Динамические элементы памяти и механизм использования в динамическом ОЗУ.
- 21. Машина состояний класса 3 (автомат Мура) и область его применений.
- 22. Устройство управления выполнением программы на базе ПЛМ и его функционирование в составе центрального процессора (ЦП).
- 23. Обобщенная архитектура (регистровая модель) ЦП.
- 24. В чём состоит специфика применения регистров адреса и регистров данных в ЦП. Что понимается под режимами адресации, применяемыми в командах ЦП.
- 25. Упрощенный алгоритм работы ЦП.
- 26. Структурное построение процессора Intel-8080 и средства обеспечения его связи с микропроцессорной системой.
- 27. Формат команд (ЦП).
- 28. Особенности формата команд для CISC и RISC архитектур.
- 29. Основные черты ЦП с регистрово ориентированной (RISC) архитектурой.
- 30. Конвейер операций и его реализация в RISC процессорах.
- 31. Микросистема на базе магистрального интерфейса. Машина фон-Неймана.
- 32. Микросистемы с гарвардской архитектурой. Структура цифрового процессора сигналов (ЦПС) семейства ADSP-21xx.
- 33. Связь ЦПС ADSP-21хх с внешними по отношению к нему компонентами МП-системы.
- 34. Привести примеры, иллюстрирующие применение CISC и RISC архитектур в современных микропроцессорах и МП-системах.

Для оценивания результатов обучения в виде умений и владений используется проверка способности обучаемого пользоваться инструментарием системы автоматического проектирования IDE Embedded Workbench компании IAR Systems и механизмом размещения программного обеспечение в целевой системе.

6.4. Типовые контрольные задания

формулируются в виде совокупности нескольких разных по сложности вопросов, перечисленных в п.п. 6.3.

Пример задания:

- -Принцип использования полупроводниковых диодов для выполнения логических операций.
- Принцип работы регистрового арифметическо-логического устройства.
- Основные черты ЦП с регистрово ориентированной (RISC) архитектурой.

В данном примере первый вопрос касается способа выполнения логических операций и относится к **Teme 1** содержания дисциплины (п. 3) «Общее представление о принципе действия, функциональном составе и архитектуре цифровых вычислительных систем». Второй – к **Teme 3** «Функциональные узлы последовательного типа (автоматы с памятью)». Третий – к **Teme 5** «Микропроцессоры: архитектура и структурное построение».

6.5. Методические материалы, определяющие процедуры оценивания.

Положение «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в ННГУ», утверждённое приказом ректора ННГУ от 13.02.2014 г. №55-ОД.

Положение «О фонде оценочных средств», утвержденное приказом ректора ННГУ от 10.06.2015 г. №247-ОД.

7. Учебно-методическое и информационное обеспечение дисциплины

а) Основная литература

- 1. Шкелев Е.И Аппаратные средства вычислительной техники: Учебное пособие. Нижний Новгород: Изд-во Нижегородского государственного унивенситета, 2011. 222 с.
- 2. Шкелев Е.И. Электронные цифровые системы и микропроцессоры: Учебное пособие. Нижний Новгород: Изд-во Нижегородского государственного унивенситета, 2004. 153 с.
- 6. Калабеков Б.А. Цифровые устройства и микропроцессорные системы. М.: Радио и связь 1997.
- 13. Рафикузаман М. Микропроцессоры и машинное проектирование микропроцессорных систем: В 2-х кн. Кн. 1. Пер с англ. М.: Мир, 1988.

б) Дополнительная литература

1. Марк Минаси. Модернизация и обслуживание ПК – Киев "Век+", Москва "Энтроп", 1999 г.

в) Программное обеспечение и Интернет ресурсы

- 1. Интегрированная среда разработки (IDE) компании IAR Systems. http://processor.wiki.ti.com/index.php/IAR_Embedded_Workbench_Kickstart_for_MS P430 Release Notes.
- 2. Практикум «Знакомство с микроконтроллером серии MSP-430». http://www.unn.ru/resources.html, per №953.15.04 от 30.04.15. Файл «znakomstvo MSP 430.pdf»
- 3. Практикум «Первые шаги в программировании микроконтроллера серии MSP-430». http://www.unn.ru/resources.html, per №953.15.04 от 30.04.15.Файл «First steps MSP 430.pdf»

8. Материально-техническое обеспечение дисциплины

Для изучения дисциплины используется лабораторный комплекс из 8 рабочих мест. Каждое рабочее место имеет персональный компьютер с интегрированной средой разработки (IDE) Embedded Workbench компании IAR Systems и подключенной

к компьютеру целевой системой на базе микроконтроллера серии MSP430 компании Texas Instruments.

Программа составлена в соответствии с требованиями ФГОС ВПО/ВО с учетом рекомендаций и ОПОП ВПО по специальности 100502 «Информационная безопасность телекоммуникационных систем».

Автор	Е.И. Шкелев
Рецензент	С.Н. Менсов
Заведующий кафедрой	Е.С. Фитасов
Программа одобрен	на на заседании методической комиссии радиофизического

факультета от «25» июня 2020 года, протокол № 03/20.