МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Химический факультет

УТВЕРЖДЕНО решением ученого совета ННГУ протокол от «16» июня 2021 г. № 8

Рабочая программа дисциплины

Квантовая механика и квантовая химия

Уровень высшего образования специалитет

Направление подготовки / специальность 04.05.01 — Фундаментальная и прикладная химия

Направленность образовательной программы

Неорганическая химия

Форма обучения **очная**

Нижний Новгород

2021 год

Лист актуализации

Визирование РПД для исполнения в очередном учебном году
Председатель МК 04 июня 2021 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры физической химии.
Протокол от20 г. №
Зав. кафедрой
Визирование РПД для исполнения в очередном учебном году
Председатель МК20г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 20 -20 vчебном голу на заселании кафелъы
Протокол от
Визирование РПД для исполнения в очередном учебном году
Председатель МК20 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 20 -20 vчебном голу на заселании кафелъы
Протокол от20г. № Зав. кафедрой
Визирование РПД для исполнения в очередном учебном году
Председатель МК20 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 20 -20 vчебном голу на заселании кафелъы
Протокол от20г. № Зав. кафедрой

1. Место дисциплины в структуре ОПОП

Дисциплина «Квантовая механика и квантовая химия» Б1.О.02.04 относится к обязательной части Блока 1, Математического и естественнонаучного цикла, является обязательной для освоения студентами очной формы обучения на втором году обучения в 4 семестре.

Для освоения дисциплины студенты используют знания, умения и виды деятельности, сформированные в процессе изучения дисциплин «Физика», «Математика». Дисциплина «Квантовая механика и квантовая химия» является основой для изучения таких областей знания как строение атома и атомного ядра, природы химической связи, квантовохимических методов для расчета структуры молекул.

Целями освоения дисциплины «квантовая механика и квантовая химия» являются:

- Изучение основ квантовой механики и квантовой химии
- Изучение квантовохимических методов расчета структуры, физикохимических свойств и реакционной способности молекул
- Получение навыков базовых расчетов атомных и молекулярных свойств на основе квантовохимической и квантовомеханической теории

Задачи дисциплины:

- Освоить основные понятия и математический аппарат квантовой механики
- Освоить методы квантово-механического описания атомных и молекулярных систем
- Познакомиться с вычислительными методами и подходами квантовой химии для описания молекулярных свойств и реакционной способности
- Освоить методы решения конкретных задач для описания атомных и молекулярных свойств.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции (код,		таты обучения по дисциплине вии с индикатором достижения	Наименование
содержание компетенции)	Индикатор достижения компетенции* (код, содержание индикатора)	Результаты обучения по дисциплине**	оценочного средства
ОПК-3	ОПК-3.1.	Знать: основные понятия и	ФОС по
Способен	Применяет	математический аппарат	дисциплине
применять	теоретические и	квантовой механики и квантовой	«Квантовая
расчетно-	полуэмпирические	химии	механика и
теоретические	модели при решении	Уметь применять методы	квантовая
методы для	задач химической	квантово-механического	химия»
изучения свойств	направленности	описания атомных и	
веществ и		молекулярных систем	
процессов с их	ОПК-3.2.	Владеть навыков базовых	
участием,	Использует	расчетов атомных и	
используя	стандартное	молекулярных свойств на основе	
современное	программное	квантовохимической и	

программное обеспечение и базы данных профессионального назначения	обеспечение и специализированные базы данных при решении задач профессиональной деятельности	квантовомеханической теории Знать возможности и способы применения программ для расчетов химических систем методом Хюккеля Уметь проводить расчеты сопряженных органических систем методом Хюккеля Владеть методами анализа получаемых результатов, их визуализации	
ОПК-5 Способен использовать информационные базы данных и адаптировать существующие программные продукты для решения задач профессиональной деятельности с учетом основных требований информационной безопасности	ОПК-5.1. Использует современные ІТ-технологии при сборе, анализе и представлении информации химического профиля, соблюдая нормы и требования информационной безопасности ОПК-5.2. Использует стандартные и оригинальные программные программные программные продукты, при необходимости адаптируя их для решения зада профессиональной деятельности ОПК-5.3. Использует современные вычислительные методы для обработки данных химического эксперимента, моделирования свойств веществ (материалов) и процессов с их участием	Знать возможности и ограничения современных квантовохимических методов и реализующего их ПО Уметь применять методы квантовохимического расчета, анализировать их результаты на основе сравнения с данными, найденными в интернет Владеть приемами простых квантовомеханических и квантово-химических расчётов и их различных вариантов с применением ПК Знать основные информационные угрозы Уметь применять методы борьбы с вирусами и другими информационными угрозами Владеть приемами безопасного использования ПК	ФОС по дисциплине «Квантовая механика и квантовая химия»

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

	очная форма обучения
Общая трудоемкость	4 3ET
Часов по учебному плану	144
в том числе	
аудиторные занятия (контактная работа):	
- занятия лекционного типа	64
- занятия семинарского типа	32
- КСРИФ	2
самостоятельная работа	10
Промежуточная аттестация –	
экзамен	36

3.2. Содержание дисциплины

										В	том ч	исле						
	Всего		Всего (часы)			Контактная работа (работа во взаимодействии с преподавателем), часы из них					я работа	я работа асы						
Наименование и краткое содержание разделов и тем дисциплины	(race			Зонатиа	лекционного типа		Зонатна	семинарского типа			Занятия лабораторного	R N		Всего		Самостоятельная работа	. (20) 19101161 (20)	
	Очная	Очно-заочная	Заочная	Очная	Очно-заочная	Заочная	Очная	Очно-заочная	Заочная	Очная	Очно-заочная	Заочная	Очная	Очно-заочная	Заочная	Очная	Очно-заочная	Заочная
Основные понятия и математический аппарат квантовой механики.	13			8			4						12			1		
Квантовомеханичес кое описание простых квантовых систем.	7			4			2						6			1		
Теория атома водорода, водородоподобных атомов и ионов.	13			8			4						12			1		

Теория углового момента. Спин. Атомные термы.	7	4	2			6		1	
Основные приближения в теории многоэлектронных систем.	7	4	2			6		1	
Химическая связь и физические эффекты, приводящие к ее образованию.	7	4	2			6		1	
Метод Хартри- Фока.	13	8	4			12		1	
Молекулярные свойства, определяемые электронной ВФ.	7	4	2			6		1	
Поверхность потенциальной энергии. Описание молекулярных свойств и реакционной способности на основе ППЭ.	13	8	4			12		1	
Использование симметрии в квантовой химии. Теория групп.	7	4	2			6		1	
Современные квантовохимически е методы. Базисные наборы.	6	4	2			6			
Точность квантовохимически х методов. Возможности современной квантовой химии.	6	4	2			6			
Промежуточная аттестация –	36								_
Экзамен КСРИФ	2								
Итого	144	64	32			96		10	

Текущий контроль успеваемости реализуется в рамках семинарских занятий. Промежуточная аттестация проходит в виде комплексного экзамена в устной форме.

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа студентов в процессе изучения дисциплины «Квантовая механика и квантовая химия» предполагает чтение учебной и научной литературы, приведенной в разделе 7 данной программы, решение задач по тематическим разделам дисциплины. Учебники и задачники имеются в наличие в библиотеке в необходимом количестве, а также доступны на соответствующих Интернет-сайтах. Виды самостоятельной работы обучающегося: проработка материала лекций, решение домашних заданий, заданных на практических занятиях, подготовка к контрольным работам, подготовка к экзаменам. В качестве дополнительного средства предполагается написание рефератов.

Контрольные вопросы и задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведены в п. 6.2.

5. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю), включающий:

5.1. Описание шкал оценивания результатов обучения по дисциплине

Уровень	Шкала оценивания сформированности компетенций									
сформирован ности	ности рительно		удовлетвори тельно	хорошо	очень хорошо	отлично	превосходно			
компетенций (индикатора достижения компетенций)	Не за	чтено		зачтено						
Знания	Отсутствие знаний теоретическо го материала. Невозможнос ть оценить полноту знаний вследствие отказа обучающегос я от ответа	Уровень знаний ниже минимальны х требований. Имели место грубые ошибки.	Минимально допустимый уровень знаний. Допущено много негрубых ошибки.	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько несущественных ошибок	Уровень знаний в объеме, соответствую щем программе подготовки, без ошибок.	Уровень знаний в объеме, превышающе м программу подготовки.			
Умения	Отсутствие минимальны х умений . Невозможнос ть оценить наличие продемонстр		Продемонстр ированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания но не в полном объеме.	Продемонстри рованы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонстри рованы все основные умения. Решены все основные задачи . Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонстр ированы все основные умения, реше ны все основные задачи с отдельными несуществен ным недочетами, выполнены все задания в полном объеме.	Продемонстр ированы все основные умения,. Решены все основные задачи. Выполнены все задания, в полном объеме без недочетов			
<u>Навыки</u>	Отсутствие владения материалом. Невозможнос ть оценить наличие навыков	При решении стандартных задач не продемонстр ированы базовые навыки.	Имеется минимальны й набор навыков для решения стандартных задач с	Продемонстри рованы базовые навыки при решении стандартных задач с некоторыми	Продемонстри рованы базовые навыки при решении стандартных задач без ошибок и	Продемонстр ированы навыки при решении нестандартн ых задач без ошибок и недочетов.	Продемонстр ирован творческий подход к решению нестандартн ых задач			

	вследствие	грубые	некоторыми	недочетами	недочетов.	
	отказа	ошибки.	недочетами			
	обучающегос					
	я от ответа					

5.2. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения.

5.2.1 Контрольные вопросы

Вопросы	Код формируемой компетенции
1. Квантовые свойства микрочастиц, опыты,	
демонстрирующие эти свойства.	
2. Основные постулаты квантовой механики.	
3. Волновая функция, ее физический смысл, основные свойства.	
4. Общий вид стационарного уравнения Шредингера.	
Общий вид времязависимого уравнения Шредингера.	
5. Гармонический осциллятор. Уравнение Шредингера	
гармонического осциллятора. Волновые функции и спектр энергий.	
6. Атом водорода, вид волновой функции. Физический смысл квантовых чисел.	ОПК-3
7. Молекулярное уравнение Шредингера. Приближение Борна-Оппенгеймера и адиабатическое приближение.	
8. Физические эффекты, приводящие к образованию химической связи.	
9. Основные положения и физический сымсл метода Хартри-Фока и Хартри-Фока-Рутана. Метод молекулярных орбиталей.	
10. Определение поверхности потенциальной энергии (ППЭ).	
Оценка физико-химических свойств вещества и	
реакционной способности на основе изучения ППЭ.	
11. Метод Хюккеля. Программное обеспечение для расчетов	
методом Хюккеля.	ОПК-5
12. Современные квантовохимические методы для оценки	OHK-5
физико-химических свойств и реакционной способности.	

5.2.2. Типовые задания для оценки сформированности компетенции ОПК-3, ОПК-5

Экзаменационные вопросы:

ОПК-3

- 1. Предмет квантовой механики и квантовой химии. Основные этапы развития квантовой теории. Главные тенденции в развитии квантовой химии. Современные возможности и применение при решении химических задач.
- 2. Экспериментальные основы квантовой механики. Квантовые свойства микрочастиц, опыты, демонстрирующие эти свойства.
- 3. Основные положения квантовой теории. Математический аппарат квантовой механики. Основные постулаты квантовой механики.
 - 4. Волновая функция, ее физический смысл, основные свойства.

- 5. Операторы, собственные функции и собственные значения. Представление операторов матрицами.
- 6. Соотношение неопределенностей. Операторы координат, импульсов, кинетической и потенциальной энергии. Оператор Гамильтона.
- 7. Принцип суперпозиции состояний. Вероятностная трактовка квантовой механики. Полная ортонормированная система волновых функций.
- 8. Стационарное уравнение Шредингера, его аналогия с уравнениями классической механики. Зависящее от времени уравнение Шредингера.
- 9. Принцип Паули. Принцип тождественности микрочастиц. Симметричные и антисимметричные волновые функции. Фермионы и бозоны.
- 10. Решение уравнения Шредингера для задачи о движении свободной частицы и задачи о движении частицы в потенциальном ящике.
- 11. Гармонический осциллятор. Уравнение Шредингера гармонического осциллятора. Волновые функции и спектр энергий, их особенности.
- 12. Квантово-механическая задача о жестком ротаторе. Волновая функция и энергия жесткого ротатора. Сферические гармоники, угловая зависимость волновых функций.
- 13. Атом водорода, вид волновой функции. Физический смысл квантовых чисел. Зависимость радиальной составляющей волновой функции от расстояния между ядром и электроном при различных квантовых числах. Атомная система единиц.
- 14. Угловые моменты в многоэлектронных атомах (орбитальный, спиновый, полный). Атомные термы в нулевом и первом приближении схемы Рассела-Саундерса. Правила Гунда. Приближение jj-связи.
- 15. Многоэлектронные системы. Одноэлектронное приближение. Приближение самосогласованного поля (ССП). Вариационный принцип.
- 16. Математическая формулировка одноэлектронного приближения. Метод ССП Хартри-Фока. Ограниченный и неограниченный метод ССП ХФР. Операторы Фока, кулоновский, обменный, их собственные значения.
- 17. Молекулярное уравнение Шредингера. Приближение Борна-Оппенгеймера и адиабатическое приближение. Понятие о вибронных взаимодействиях. Приближение МО ЛКАО. Уравнения Рутана. Теорема Купманса.
- 18. Физические эффекты, приводящие к образованию химической связи. Делокализация электронной плотности. Образование ковалентной связи. Образование ионной связи.
- 19. Гомоядерные двухатомные молекулы, вычисление энергии их МО методом МО ССП. Секулярное уравнение. Связывающие и разрыхляющие орбитали.
- 20. Молекулярные термы. Концепции гибридизации и резонанса в терминах квантовой механики. Качественная теория МО. Корреляционные орбитальные диаграммы.
- 21. Оценка электронных свойств молекулы. Потенциалы ионизации. Мультипольные моменты. Заряды атомов. Различные шкалы атомных зарядов. Оценка порядков связи и валентности атомов. Понятие об индексах реакционной способности.
- 22. Концепция ППЭ. Оценка физико-химических свойств вещества и реакционной способности на основе изучения ППЭ. Стационарные точки, локальные минимумы и переходные состояния.
- 23. Оптимизация геометрии, поиск переходных состояний. Определение термодинамических параметров реакций и констант скорости на основе исследования ППЭ.
- 24. Симметрия молекулярных систем. Основные понятия теории групп. Группы симметрии молекул.
- 25. Неприводимые представления. Характеры НП. Использование теории групп в квантовой химии. Классификация МО и молекулярных термов. Сокращение размерности гамильтониана. Оценка молекулярных интегралов.
- 26. Неэмпирические (ab initio) методы в квантовой химии. Преимущества и недостатки неэмпирических методов. Электронная корреляция.

ОПК-5

- 1. Методы учета электронной корреляции. Методы конфигурационного взаимодействия. Теория возмущений. Теория связанных кластеров. Их сравнительная характеристика, области применения.
- 2. Теория функционала плотности. Ее теоретические основы, область применения, возможности и ограничения.
- 3. Полуэмпирические методы. Приближения валентных электронов, нулевого дифференциального перекрывания, расчет одно- и двухэлектронных интегралов. Приближение нулевого двухатомного дифференциального перекрывания. Методы MNDO, AM1 и PM3.
- 4. Проблема выбора базиса АО. Основные базисные наборы АО: минимальный, двух- и трехэкспоненциальные, корреляционно-согласованные. Поляризационные функции. Диффузные функции. Их особенности и применение для описания различных химических систем.

Экзаменационные задачи:

ОПК-3

- 1 Какова длина волны де Бройля электрона и протона, энергия которых равна средней кинетической энергии поступательного теплового движения молекул при комнатной температуре?
- 2 Длина волны резонансной линии серии Лаймана (n_2 =1) $\lambda_{L\alpha}$ = 121.5 нм, а длина волны границы серии Бальмера (n_2 =2) $\lambda_{B\infty}$ = 365 нм. Найти из этих данных потенциал ионизации атома H.
- 3 Чему равна частота колебаний, спектроскопическое волновое число ($\overline{\nu}=1/\lambda$ в см⁻¹), и энергия нулевых колебаний молекулы HF, если при увеличении длины связи на 0.01 Å относительно положения равновесия ее энергия увеличивается на 0.2 кДж/моль.
- 4 Колебания протона в карбоксильной группе -C(=O)OH характеризуются спектроскопическим волновым числом 3600 см⁻¹. Оценить вероятность туннелирования протона в положение -C(OH)=O при T=10K, если активационный барьер такой изомеризации 100 кДж/моль, а расстояние между равновесными положениями протона 1 Å?
- **5** Определить электронный терм основного состояния атомов первого и второго периодов.
- В атоме Не оба электрона находятся на орбитали $\Psi_{1s} = N \exp(-\alpha r)$. Выразить энергию основного состояния атома Не через атомные интегралы, считая, что волновая функция атома имеет вид $\Phi = \Psi_{1s}(r_1)\Psi_{1s}(r_2)[\alpha(1)\beta(2) \beta(1)\alpha(2)]$.

ОПК-5

- 1 Методом МОХ найти энергии МО, коэффициенты разложения МО, энергию молекулы, орбитальные заряды атомов и порядки связей в молекулах CH₂=C=O и CH₂=C=NH. (Без использования компьютерной программы).
- 2 Методом МОХ найти энергии МО, коэффициенты разложения МО, энергию молекулы, орбитальные заряды атомов и порядки связей в молекулах бутадиена CH₂=CH–CH=CH₂ и циклобутадиена
 - u-(-CH=CH-)₂. (Разрешается использовать компьютерную программу диагонализации матриц)

- **3** Определить группу симметрии молекул: H_2O_2 , циклобутан, циклогексан, PCl_5 (тригональная бипирамида), SF_6 , *орто*-хинон, 1,3,5-триметилбензол, ферроцен, бис-бензолхром, C_{60} .
- **4** Классифицировать МО этилена по неприводимым представлениям группы симметрии молекулы.

5.2.4. Темы курсовых работ, эссе, рефератов

- 1. История квантовой химии.
- 2. Квантовая нелокальность и квантовая запутанность.
- 3. Проблема скрытых параметров в квантовой механике.
- 4. Использование свойств симметрии для вывода правил отбора.
- 5. Релятивистские поправки в теории атома.
- 6. Классическая и квантовая молекулярная динамика.
- 7. Методы расчета электронной структуры кристаллических твердых тел
- 8. Стандартная и вариационная теория переходного состояния
- 9. Квантовохимические теории переноса электрона
- 10. Времязависимая теория возмущений и квантовохимические расчеты элетронных спектров

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Основная литература:

- 1. Крашенинин, В.И. Квантовая химия и квантовая механика в применении к задачам. [Электронный ресурс] / В.И. Крашенинин, Е.Г. Газенаур, Л.В. Кузьмина. Электрон. дан. Кемерово : КемГУ, 2012. 56 с. Режим доступа: http://e.lanbook.com/book/44352 Загл. с экрана.
- 2. Майер, И. Избранные главы квантовой химии: доказательства теорем и вывод формул. [Электронный ресурс] Электрон. дан. М.: Издательство "Лаборатория знаний", 2014. 383 с. Режим доступа: http://e.lanbook.com/book/50535 Загл. с экрана.
- 3. Цирельсон, В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела. [Электронный ресурс] Электрон. дан. М. : Издательство "Лаборатория знаний", 2014. 522 с. Режим доступа: http://e.lanbook.com/book/66357 Загл. с экрана.

6.2. Дополнительная литература:

- 1. Хигаси К., Баба Х., Рембаум А. Квантовая органическая химия. М.: Мир, 1976.
- 2. Хедвиг П. Прикладная квантовая химия. М.: Мир, 1977.

6.3 Рекомендуемая литература:

- 1. Мелёшина А.М. Курс квантовой механики для химиков: М.: Высш. шк., 1980.215 с.
- 2. Фларри Р. Квантовая химия. М.: Мир, 1985. 472 с.
- 3. Заградник Р., Полак Р. Основы квантовой химии. М.: Мир, 1979. 504 с.
- 4. Мелёшина А.М. Курс квантовой химии. Воронеж: Изд-во Воронеж. ун-та, 1981. 198 с.
- 5. Яцимирский К.Б., Яцимирский В.К. Химическая связь. Киев: Вища шк., 1975, 304 с.
- 6. Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул. Ростов-на-Дону: Изд-во "Феникс", 1997. 570 с.
- 7. Абаренков И.В., Братцев В.Ф., Тулуб А.В. Начала квантовой химии. М.: Высш. шк., 1989.

- 8. Болотин А.Б., Степанов Н.Ф. Теория групп и её применение в квантовой механике молекул. Вильнюс: Изд-во "Элком", 1999. 246 с.
- 9. Степанов Н.Ф., Пупышев В.И. Квантовая механика молекул и квантовая химия. М.: Изд-во Моск. ун-та. 1991. 384 с.
- 10. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелявистская теория. М.: Наука, 1974.
 - 11. Цюлике Л. Квантовая химия. М.: Мир, 1976.
 - 12. Маррел Дж., Кеттл С., Теддер Дж. Химическая связь. М.: Мир, 1980.
 - 13. Накагура С., Накадзима Т. Введение в квантовую химию. М.: Мир, 1982.
 - 14. Дьюар М. Теория молекулярных орбиталей в органической химии. М.: Мир, 1972.

6.4 Интернет-ресурсы:

- 1. Игнатов С.К. Квантовая химия. Ч.1. http://www.unn.ru/chem/ignatov/IgnatovSK-KvantovayaKhimiya-1.pdf
- 2. Игнатов С.К. Квантовая химия. Ч.2. http://www.unn.ru/chem/ignatov/IgnatovSK-KvantovayaKhimiya-2.pdf
- 3. Игнатов С.К. Задачи по квантовой химии. http://www.unn.ru/chem/ignatov/IgnatovSK-ZadachiQC.pdf
- 4. Программа для решения задач методом Хюккеля. http://www.unn.ru/chem/ignatov/Huckel.xls.
 - 5. https://www.coursera.org/browse/computer-science

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой также предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений.

7. Материально-техническое обеспечение дисциплины

Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой, оснащенные оборудованием и техническими средствами обучения: ауд.308 корп.5, ауд.125 корп.5 (аудитории с мультимедиа-проектором)

Материально-техническое обеспечение лекционных и семинарских занятий: видеопроектор, ноутбук, переносной экран, проектор, доска.

Программа составлена в соответствии с требованиями ОС ВО ННГУ. Приказ ННГУ от 13.05.2020г. № 275-ОД «О введении в действие образовательного стандарта высшего

образования – спе	ециалитет	по специалы	ности	04.05.01	«Фундаментальная	И	прикладная					
«RИМИХ												
Автор:												
д.х.н., доцент Игнатов С.К.												
Рецензент:												
Доцент ИИТММ, к.	фм.н			Разу	уваев А.Г.							
Заведующий кафедр	оой физиче	ской химии,										
д.х.н., профессор			_ Марь	кин А.В.								