МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

	Радиофизический факультет	
		УТВЕРЖДАК
	Декан радиофизического факультета	Матросов В.I
	« <u>29</u> »	июня 2020
	Рабочая программа дисциплин	ы
	Б1.В.11 Акустические	
	информационные каналы	
	специалитет	
	Направление подготовки / специальной нформационная безопасность телеком систем»	
«Сис	Специализация гемы подвижной цифровой защищенно	ой связи»
	Квалификация (степень)	
	специалист	
	Форма обучения	

2018

Нижний Новгород

1. Место и цели дисциплины в структуре ОПОП

Дисциплина «Акустические информационные каналы» относится к вариативной части Блока 1 «Дисциплины (модули)» ОПОП по специальности 10.05.02 «Информационная безопасность телекоммуникационных систем» на радиофизическом факультете ННГУ. Дисциплина обязательна для освоения в 8 семестре.

Целями освоения дисциплины являются:

- ознакомление студентов с основными физическими явлениями, изучаемыми современной акустикой, и, до известной степени, с элементами используемого ею математического аппарата,
- формирование профессионального подхода к решению практических задач современной акустики при использовании максимально простых средств их решения.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции	Планируемые результаты обучения по
(код компетенции, уровень освоения – при наличии в карте компетенции)	дисциплине (модулю), характеризующие этапы формирования компетенций
ОПК-1: способность анализи— ровать физические явления и процессы для формализации и решения задач, возникающих в ходе профессиональной деятельности	31 (ОПК-1): Знать основы теории распространения акустических волн и передачи информации в неоднородных средах. У1 (ОПК-1): Уметь использовать основные законы и базовые уравнения для решения конкретных задач. В1 (ОПК-1): Владеть основными методами (метод
(этап освоения: завершающий)	геометрической акустики, модовое представление поля) для решения задач, связанных с распространением акустических сигналов в однородных и неоднородных средах, в том числе в условиях волноводного распространения звука
ПК-2: способность формули— ровать задачи, планировать и проводить исследования, в том числе эксперименты и математическое моделирование, объектов, явлений и процессов телекоммуникационных систем, включая обработку и оценку достоверности их результатов	31 (ПК-2): Знать возможности современной акустики неоднородных сред для постановки экспериментов и математического моделирования У1 (ПК-2): Уметь формулировать типовые задачи, планировать и проводить исследования, в том числе эксперименты и математическое моделирование распространения звуковых сигналов в природных и искусственных средах. В1 (ПК-2):Владеть простейшими способами обработки экспериментальных данных и проводить
(этап освоения: базовый)	оценку достоверности их результатов

Окончательное завершение формирования компетенций, предусмотренных в рамках данной дисциплины, происходит при прохождении лабораторного практикума.

3. Структура и содержание дисциплины

Объем дисциплины составляет 4 зачетные единицы, всего 144 часа, из которых 66 часов составляет контактная работа обучающегося с преподавателем (32 часа занятий лекционного типа, 16 часов занятий семинарского типа, 16 часов занятий лабораторного типа, в том числе 2 часа — мероприятия текущего контроля успеваемости, 2 часа — мероприятия промежуточной аттестации), 78 часов составляет самостоятельная работа обучающегося.

Содержание дисциплины

содержание взаимодействии с разделов и тем дисциплины,	из них		ı работа асы
разделов и тем дисциплины,	из них	ем), часы	ı работа асы
дисциплины,			г работ асы
	ого типа		г ра(
Занатия Занатия Занатия Занатия Занатия Семинарского типа Занатия Занатия Занатия Занатия Занатия Семинарского типа	Занятия лабораторного типа	Всего	Самостоятельная работа обучающегося, часы
Тема 1. Акусти— 28 8 4 ческое поле в однородной среде 8 4	6	18	18
Тема 2. Поглощение 12 4 2 и дисперсия 3вуковых волн 2		6	16
Тема 3. Распростра— 62 18 10 нение акустических волн в неоднород— ных и движущихся средах	10	38	40
Тема 4. Современ— 4 2 ное состояние теории распростра— нения волн в природных средах		2	4
В т.ч.текущий 2 1 контроль Промежуточная аттестация: экзамен	1	2	

Текущий контроль успеваемости проходит в рамках семинарских и лабораторных занятий. Итоговый контроль осуществляется на экзамене.

4. Образовательные технологии

В соответствии с рабочей программой и тематическим планом изучение дисциплины проходит в виде аудиторной и самостоятельной работы студентов. Учебный процесс в аудитории осуществляется в форме лекционных, практических и лабораторных занятий.

Образовательные технологии, способствующие формированию компетенций *используемые на занятиях лекционного типа:*

- лекции-беседы с возможностью использования мультимедийных средств поддержки образовательного процесса;
- лекции с проблемным изложением учебного материала.

используемые на занятиях практического типа:

- семинары с обсуждением учебного материала теоретического характера;
- практические занятия с использованием физических установок;
- регламентированная самостоятельная деятельность студентов;
- решение проблемных ситуаций для реализации технологии коллективной мыслительной деятельности.

На лекциях раскрываются следующие основные темы изучаемого курса, которые входят в рабочую программу:

Введение. Цели, задачи, структура курса. Три исторических периода развития акустики как науки - развитие акустики от Пифагора и Аристотеля до наших дней. Общая акустика, прикладная акустика, психофизиологическая акустика.

- 1. Акустическое поле в неограниченной среде
- 1.1. Акустическое поле. Основные понятия.

Звуковые волны. Различные типы задач акустики (задачи о свободных волнах; задачи с начальными условиями; краевые задачи; задачи о сторонних воздействиях (источники звука); задачи о рассеянии на препятствиях; задачи о затухании звука).

Основные параметры, характеризующие акустическую волну: амплитуда давления и амплитуда акустического смещения, амплитуда колебательной скорости, скорость звуковой волны. Электроакустическая аналогия. Сила звука и интенсивность звука. Вектор Умова-Пойнтинга. Коэффициент поглощения.

1.2. Система основных уравнений гидродинамики идеальной жидкости.

Идеальная жидкость. Лагранжев и Эйлеров способы описания движения жидкости. Связь между локальной и субстанциальной производной.

Уравнение неразрывности или закон сохранения массы. Плотность потока жидкости.

Уравнение Эйлера - аналог II закона Ньютона для гидродинамики.

Уравнение состояния. Примеры уравнения состояния: адиабата Пуассона и уравнение Тэта.

1.3. Уравнения линейной акустики идеальной среды.

Линеаризация системы уравнений гидродинамики идеальной жидкости. Волновое уравнение.

Плоская звуковая волна. Связь между скоростью, давлением и плотностью в плоской волне. Продольность звуковых волн. Монохроматические звуковые волны. Уравнение Гельмгольца.

1.4. Энергия и интенсивность звуковой волны. Закон изменения энергии.

Объемная плотность энергии звуковой волны. Вектор плотности потока энергии вектор Умова. Вывод закона сохранения энергии для идеальной однородной среды. Объемная плотность энергии и интенсивность плоской бегущей волны.

Измерения уровня звукового давления в акустике. Децибелл.

2. Поглощение и дисперсия звуковых волн

2.1. Различные механизмы поглощения звука. Уравнение Навье-Стокса.

Вязкость и теплопроводность. Сдвиговое трение. Коэффициент сдвиговой вязкости. Объемная вязкость среды и коэффициент объемной вязкости. Уравнение Навье-Стокса - аналог II закона Ньютона для вязкой жидкости.

2.2. Линейные уравнения вязкой теплопроводящей среды.

Модифицированное линеаризованное уравнение состояния. Линеаризация уравнения Навье-Стокса. Акустические числа Маха и Рейнольдса. Волновое уравнение для звуковой волны с учетом вязкости.

Дисперсионное соотношение в вязкой среде. Коэффициент затухания плоской волны. Формула Стокса-Кирхгоффа-Рэлея. Проявление гидродинамической дисперсии для ультразвуковых волн.

- 3. Распространение акустических волн в неоднородных и движущихся средах
- 3.1. Отражение и преломление плоских волн на границах раздела сред.

Граничные условия на границе двух жидких сред. Закон Снеллиуса. Формулы Френеля для коэффициентов отражения и прохождения на границе двух жидких сред.

Анализ различных предельных случаев: нормальное падение (равенство акустических импедансов сред; "абсолютно жесткая" и "абсолютно мягкая" акустическая граница; асимметрия границы по давлению при прохождении волны); абсолютно прозрачная граница; полное внутреннее отражение.

3.2. Звуковое поле монополя, расположенного вблизи абсолютно отражающей поверхности.

Уравнение Гельмгольца с граничными условиями. Понятие "мнимых" источников. Интерференционная картина поля и характеристика направленности монополя вблизи свободной поверхности. Зависимость излучаемой мощности от заглубления излучателя.

3.3. Волноводное распространение акустических волн .

Геометрическая расходимость и геометрическая дисперсия. Примеры природных акустических волноводов и технических волноводов.

Модовое представления для поля в волноводе с идеальными границами (двумерная задача). Нормальная волна или собственная мода волновода. Дисперсионные соотношения. Распределение давления по вертикальной координате для первых мод в волноводах с абсолютно отражающими стенками. Волны Бриллюэна. Распространяющиеся и затухающие моды. Количество распространяющихся мод. Критическая частота моды. Фазовая и групповая скорости мод - проявление геометрической дисперсии. Коэффициенты возбуждения мод. Ортогональность мод.

Трехмерная задача - представление поля в волноводе с прямоугольным сечением. Фазовая и групповая скорости. Волны Бриллюэна. Коэффициенты возбуждения.

Фильтрация сигнала волноводом. Селекция мод по углам. Явление затягивания импульса в волноводе.

3.4. Распространение звуковых волн в плавно-неоднородных средах. Приближение геометрической акустики.

Понятие плавно-неоднородной среды. Высокочастотная асимптотика поля.

Уравнение эйконала для фазы волны и уравнение переноса для амплитуды волны. Поверхности постоянной фазы и геометроакустические лучи. Уравнение для траектории луча.

Решение уравнения эйконала и уравнения переноса вдоль траектории луча. Расходимость лучей. Лучевые координаты. Алгоритм расчета поля в плавнонеоднородной среде методом геометрической акустики.

Рефракция лучей. Примеры построения лучевых траекторий в плоскослоистых неоднородных средах: уравнение для траектории луча в плоскослоистой среде; вертикальное распространение в изотермической атмосфере; распространение в реальной тропосфере - скорость звука убывает с высотой; распространение в подводном звуковом канале (ПЗК).

3.5. Акустика движущихся сред. Эффект Доплера.

Линеаризованные уравнения для идеальной движущейся среды. Распространение звука в земной атмосфере при наличии ветра. Рефракция лучей по ветру и против ветра.

Эффект Доплера в акустике. Связь между частотой волны и волновым вектором в движущейся среде. Анализ различных частных случаев: движущийся приемник, движущийся источник, совместное движение источника и приемника. Применение эффекта Доплера для измерения скорости движущихся целей и создания синтезированных аппертурных антенн.

4. Современное состояние теории распространения волн в природных средах

Все основные темы прорабатываются на практических занятиях.

Формой итогового контроля знаний студентов по дисциплине является экзамен, в ходе которого оценивается уровень теоретических знаний и навыки решения практических задач.

Для закрепления пройденного материала предусмотрен лабораторный практикум, включающий следующие лабораторные работы (студент должен выполнить 2 из трех приведенных ниже лабораторных работ):

№п/п	Наименование лабораторных работ
1	Колебания механических систем с распределенными параметрами: продольные
	колебания стержней.
2	Исследование акустического поля в однородной среде с плоской границей
3	Принцип взаимности и его применение в акустических измерениях

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

По данной дисциплине используются следующие виды самостоятельной работы студента: в читальном зале библиотеки, в учебных кабинетах (лабораториях), компьютерных классах, с доступом к ресурсам Интернет и в домашних условиях. Порядок выполнения самостоятельной работы соответствует программе курса и контролируется в ходе экзамена по данной дисциплине. Самостоятельная работа подкрепляется учебнометодическим и информационным обеспечением, включающим рекомендованные учебники и учебно-методические пособия, а также конспекты лекций.

Список контрольных вопросов для промежуточной аттестации по итогам освоения дисциплины:

- 1. Система основных уравнений идеальной жидкости (уравнение неразрывности, уравнение Эйлера, уравнение состояния).
 - 2. Уравнения линейной акустики идеальной среды.
 - 3. Энергия и интенсивность звуковой волны. Закон изменения энергии.
 - 4. Измерения уровня звукового давления в акустике.
 - 5. Уравнение Навье-Стокса.
 - 6. Волновое уравнение для звуковой волны с учетом вязкости.
 - 7. Отражение и преломление плоских волн на границах раздела сред.
- 8. Звуковое поле монополя, расположенного вблизи абсолютно отражающей поверхности.
 - 9. Модовое представления для поля в волноводе с идеальными границами.
 - 10. Уравнения геометрической акустики и их решения.

- 11. Уравнение для траектории луча в плоскослоистой среде.
- 12. Эффект Доплера в акустике.
- 6. Фонд оценочных средств для промежуточной аттестации по дисциплине, включающий:
- 6.1. Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования

ОПК-1 способность анализировать физические явления и процессы для формализации и решения задач, возникающих в ходе профессиональной деятельности

Индикаторы	Критерии оценивания (дескрипторы)						
компетенции	«плохо»	«неудов летвори тельно»	«удовлетворит ельно»	«хорошо»	«очень хорошо»	«отлично»	«превосходн о»
Знания Знать основы теории распространения акустических волн и передачи информации в неоднородных средах	отсутствие знаний материала	наличие грубых ошибок в основно м материа ле	знание основного материала с рядом негрубых ошибок	знание основного материала с рядом заметных погрешност ей	знание основного материала с незначительны ми погрешностям и	знание основного материала без ошибок и погрешносте й	знание основного и дополнитель ного материала без ошибок и погрешносте й
Умения Уметь использовать основные законы и базовые уравнения для решения конкретных задач.	Полное отсутствие умения использова ть основные законы и базовые уравнения	Отсутст вие умения использ овать основн ые законы и базовые уравнен	Умение использовать основные законы и базовые уравнения с небольшими ошибками	Умение использова ть основные законы и базовые уравнения при наличии незначительных ошибок	Умение использовать основные законы и базовые уравнения	Умение использовать основные законы и базовые уравнения для решения решения конкретных задач.	Умение использовать основные законы и базовые уравнения для решения нестандартных задач.
Навыки Владеть основными методами (метод геометрической акустики, модовое представление поля) для решения задач, связанных с распространение м акустических сигналов в однородных и неоднородных и средах, в том числе в условиях волноводного распространения звука	Полное отсутствие навыков.	Отсутст вие навыко в.	Наличие минимальных навыков.	Посредстве нное владение навыками.	Хорошее владение навыками	Отличное владение навыками.	Всесторонне е владение навыками.
Шкала оценок по проценту	0-20%	20 – 50	50 – 70 %	70-80 %	80 – 90 %	90 – 99 %	100%

правильно				
выполненных				
контрольных				
заданий				

ПК-2 способность формулировать задачи, планировать и проводить исследования, в том числе эксперименты и математическое моделирование, объектов, явлений и процессов телекоммуникационных систем, включая обработку и оценку достоверности их результатов

Индикаторы	Критерии оценивания (дескрипторы)						
компетенции	«плохо»	«неудов летвори тельно»	«удовлет воритель но»	«хорошо»	«очень хорошо»	«отлично»	«превосходно»
Знания Знать возможности современной акустики неоднородных сред для постановки экспериментов и математического моделирования	отсутстви е знаний материал а	наличие грубых ошибок в основно м материа ле	знание основног о материал а с рядом негрубых ошибок	знание основного материала с рядом заметных погрешност ей	знание основног о материал а с незначите льными погрешно стями	знание основного материала без ошибок и погрешносте й	знание основного и дополнительного материала без ошибок и погрешностей
Умения Уметь формулировать типовые задачи, планировать и проводить исследования, в том числе эксперименты и математическое моделирование распространения звуковых сигналов в природных и искусственных средах.	Полное отсутстви е умения формули ровать типовые задачи	Отсутст вие умения формул ировать типовы е задачи	Умение формулир овать типовые задачи уравнени я с небольши ми ошибкам и	Умение формулиро вать типовые задачи при наличии незначител ьных ошибок	Умение формули ровать типовые задачи	Умение формулирова ть типовые задачи решения конкретных задач.	Умение формулировать типовые задачи для решения нестандартных задач.
Навыки Владеть простейшими способами обработки экспериментальны х данных и проводить оценку достоверности их результатов	Полное отсутстви е навыков.	Отсутст вие навыко в.	Наличие минималь ных навыков.	Посредстве нное владение навыками.	Хорошее владение навыками	Отличное владение навыками.	Всестороннее владение навыками.
Шкала оценок по проценту правильно выполненных контрольных заданий	0 – 20 %	20 - 50	50 – 70 %	70-80 %	80 – 90 %	90 – 99 %	100%

6.2. Описание шкал оценивания результатов обучения по дисциплине

Итоговый контроль качества усвоения студентами содержания дисциплины проводится в виде экзамена, на котором определяется:

- уровень усвоения студентами основного учебного материала по дисциплине;
- уровень понимания студентами изученного материала
- способности студентов использовать полученные знания для решения конкретных задач.

Оценка	Уровень подготовки
Превосходно	Высокий уровень подготовки, безупречное владение теоретическим материалом, студент демонстрирует творческий поход к решению нестандартных задач. Студент безупречно решил задачу, либо был освобожден от решения задач по итогам активной работал на практических занятиях и отличных успехах в решении контрольных работ, а также дал полный и развернутый ответ на теоретический вопрос билета и правильно ответил на дополнительные вопросы. 100 %-ное выполнение контрольных экзаменационных заданий
Отлично	Высокий уровень подготовки Студент безупречно решил задачу, либо был освобожден от решения задач по итогам активной работал на практических занятиях и отличных успехах в решении контрольных работ, а также дал полный и развернутый ответ на теоретический вопрос билета. Студент активно работал на практических занятиях. Выполнение контрольных экзаменационных заданий на 90% и выше
Очень хорошо	Хорошая подготовка. Студент решил задачу, дал полный и развернутый ответ на теоретический вопрос билета, но имеются неточности или шероховатости в ответах. Студент активно работал на практических занятиях. Выполнение контрольных экзаменационных заданий от 80 до 90%.
Хорошо	В целом хорошая подготовка с небольшими ошибками или недочетами. Студент решил задачу, дал ответ на теоретический вопрос билета, но имеются неточности или шероховатости в ответах. Допускаются ошибки при ответах на дополнительные и уточняющие вопросы экзаменатора. Студент работал на практических занятиях. Выполнение контрольных экзаменационных заданий от 70 до 80%.
Удовлетворительно	Минимально достаточный уровень подготовки. Студент показывает минимальный уровень теоретических знаний. Студент решил задачу, дал неполный ответ на теоретический вопрос билета, затруднялся с ответом на дополнительные вопросы. Студент посещал практические занятия.

	Выполнение контрольных экзаменационных заданий от 50 до
	70%.
Неудовлетворительно	Подготовка недостаточная и требует дополнительного
	изучения материала. Студент не решил задачу или испытывал
	значительные трудности при ее решении. Студент дает
	ошибочные ответы, как на теоретические вопросы билета, так и
	на наводящие и дополнительные вопросы экзаменатора.
	Студент пропустил большую часть практических занятий.
	Выполнение контрольных экзаменационных заданий до 50%.
Плохо	Подготовка абсолютно недостаточная. Студент не отвечает на
	поставленные вопросы, не умеет решать задачи. Студент
	отсутствовал на большинстве лекций и практических занятий.
	Выполнение контрольных экзаменационных заданий менее 20
	%.

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине (модулю), характеризующих сформированность компетенций

Для оценивания результатов обучения в виде <u>знаний</u> используются следующие процедуры и технологии:

- письменные и устные ответы на вопросы.

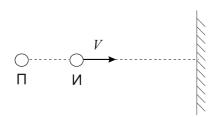
Для оценивания результатов обучения в виде <u>умений</u> и <u>владений</u> используются следующие процедуры и технологии:

- тестирование.

Для проведения итогового контроля сформированности компетенции используются: - устное собеседование, тестовые задания.

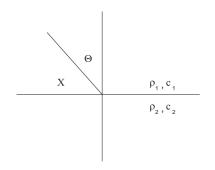
6.4. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих сформированность компетенций и (или) для итогового контроля сформированности компетенции.

Примеры контрольных вопросов для промежуточной аттестации по итогам освоения дисциплины даны в пункте 5 РПД.

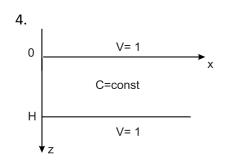

Для оценки сформированности компетенции ОПК-1 и ПК-2 служат следующие вопросы.

- 1. Различные типы задач акустики (задачи о свободных волнах; задачи с начальными условиями; краевые задачи; задачи о сторонних воздействиях (источники звука); задачи о рассеянии на препятствиях; задачи о затухании звука).
- 2. Основные параметры, характеризующие акустическую волну: амплитуда давления и амплитуда акустического смещения, амплитуда колебательной скорости, скорость звуковой волны.
- 3. Уравнение неразрывности или закон сохранения массы. Плотность потока жидкости.
 - 4. Уравнение Эйлера аналог II закона Ньютона для гидродинамики.
- 5. Уравнение состояния. Примеры уравнения состояния: адиабата Пуассона и уравнение Тэта.
- 6. Линеаризация системы уравнений гидродинамики идеальной жидкости. Волновое уравнение.

- 7. Плоская звуковая волна. Связь между скоростью, давлением и плотностью в плоской волне.
 - 8. Уравнение Гельмгольца.
 - 9. Объемная плотность энергии звуковой волны.
 - 10. Различные механизмы поглощения звука.
 - 11. Уравнение Навье-Стокса аналог II закона Ньютона для вязкой жидкости.
 - 12. Акустические числа Маха и Рейнольдса.
 - 13. Отражение и преломление плоских волн на границах раздела сред.
 - 14. Граничные условия на границе двух жидких сред. Закон Снеллиуса.
- 15. Формулы Френеля для коэффициентов отражения и прохождения на границе двух жидких сред.
- 16. Интерференционная картина поля и характеристика направленности монополя вблизи свободной поверхности.
 - 17. Зависимость излучаемой мощности от заглубления излучателя.
 - 18. Примеры природных акустических волноводов и технических волноводов.
- 19. Модовое представления для поля в волноводе с идеальными границами (двумерная задача).
 - 20. Волны Бриллюэна. Распространяющиеся и затухающие моды.
 - 21. Фазовая и групповая скорости мод проявление геометрической дисперсии.
- 22. Распространение звуковых волн в плавно-неоднородных средах. Приближение геометрической акустики.
- 23. Алгоритм расчета поля в плавно-неоднородной среде методом геометрической акустики.
- 24. Эффект Доплера в акустике. Анализ различных частных случаев: движущийся приемник, движущийся источник, совместное движение источника и приемника.


Типовые задачи к экзамену по курсу «Акустические информационные каналы» (ОПК-1)

1. Исходя из волнового уравнения для потенциала скорости ☑, показать, что плоская звуковая волна является продольной. Найти связь между приращением давления Р' и амплитудой скорости V в звуковой волне. 2.


Источник монохроматического звукового сигнала частоты $f=15~\mathrm{k\Gamma}$ ц двигается по направлению к отражающей поверхности со скоростью $V=10~\mathrm{m/c}$. Найти частоту биений между прямым и отраженным эхо-сигналом, которые воспринимаются неподвижным приемником (скорость звука в воздухе с $\approx 300~\mathrm{m/c}$).

3.

Плоская звуковая волна падает на границу раздела двух жидких сред. Рассчитать и построить графики функции коэффициента отражения (по давлению) V в зависимости от угла падения Θ (или от угла скольжения X). Изобразить коэффициент отражения V на комплексной плоскости (n = c_1/c_2 = 1,5; m = $\rho_1/$ ρ_2 = 3).

- плотности сред, с1 и с2 - скорости звука в средах.

В плоском изоскоростном слое с абсолютно отражающими границами находится источник монохроматической волны с длиной волны λ . Решив краевую задачу, получить выражения для собственных чисел и собственных функций волновода и записать решение для нормальных волн. Найти углы скольжения для волн Бриллюэна первых трех распространяющихся мод, если $\lambda = 4$ м, H = 12 м.

6.5. Методические материалы, определяющие процедуры оценивания.

Положение «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в ННГУ», утверждённое приказом ректора ННГУ от 13.02.2014 г. №55-ОД, Положение о фонде оценочных средств, утвержденное приказом ректора ННГУ от 10.06.2015 №247-ОД.

7. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
 - 1. Гурбатов С.Н., Грязнова И.Ю., Демин И.Ю., Курин В.В., Прончатов-Рубцов Н.В. Сборник задач по механике сплошных сред: гидромеханика и акустика (учебное пособие) Изд-во ННГУ, Н.Новгород, 2006. 92 с.
 - 2. Акустика в задачах. Учеб. рук-во. / Под ред. С.Н.Гурбатова и О.В.Руденко. М.: Наука, 2009. 336 с.
 - 3. Гурбатов С.Н., Грязнова И.Ю., Демин И.Ю., Курин В.В., Прончатов-Рубцов Н.В. Электронный задачник «Основы механики сплошных сред: гидромеханика и акустика» / Фонд образовательных электронных ресурсов ННГУ, 2012. 95 с. http://www.unn.ru/books/met_files/Zadachnic_MSS.doc
 - б) дополнительная литература:
 - 1. Шаньгин, В.Ф. Защита информации в компьютерных системах и сетях. [Электронный ресурс] : учеб. пособие Электрон. дан. М. : ДМК Пресс, 2012. 592 с. Режим доступа: http://e.lanbook.com/book/3032 —
- в) программное обеспечение и Интернет-ресурсы
- 1. Гурбатов С.Н., Грязнова И.Ю., Демин И.Ю., Курин В.В., Прончатов-Рубцов Н.В. Электронный задачник «Основы механики сплошных сред: гидромеханика и акустика» / Фонд образовательных электронных ресурсов ННГУ, 2012. 95 с.

http://www.unn.ru/books/met files/Zadachnic MSS.doc

8. Материально-техническое обеспечение дисциплины

Для обучения студентов названной дисциплине имеются в наличии: специальные кабинеты, оборудованные мультимедийными средствами обучения; компьютерные классы, где имеется возможность выхода в Интернет; присутствует полный комплект лицензионного обеспечения, необходимый для работы компьютерных программ.

Программа составлена в соответствии с требованиями ФГОС ВО с учетом рекомендаций и ОПОП ВО по специальности 10.05.02 «Информационная безопасность телекоммуникационных систем».

Автор Прончатов-Рубцов Н.В.

Рецензент Матросов В.В.

Заведующий кафедрой акустики, профессор

Гурбатов С.Н.

Программа одобрена на заседании методической комиссии радиофизического факультета от «25» июня 2020 года, протокол № 03/20.