МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет, кафедра радиотехт (факультет / институт / филиал)	ники
(факультет / институт / филиал)	
	УТВЕРЖДАЮ:
	, ,
Декан	
радиофизического	Матросов Е
факультета	
« <u>29</u> »	июня 2020 г.
Рабочая программа дисциплины	
Цифровая обработка сигналов	
(наименование дисциплины (модуля))	
Уровень высшего образования	
СПЕЦИАЛИТЕТ (бакалавриат / магистратура / специалитет)	
Направление подготовки / специальность	
10.05.02 «Информационная безопасность телекоммун	икационных
СИСТЕМ>> (указывается код и наименование направления подготовки / специально	сти)
Направленность образовательной программы	r
TIAIIDABUCHHOCIS OODAGOBAICUSHOA HOOLDAMMS	
	ANCDO!
«Системы подвижной цифровой защищенной с указывается профиль / магистерская программа / специализация)	СВЯЗИ»
«Системы подвижной цифровой защищенной общистерская программа / специализация)	СВЯЗИ»
«Системы подвижной цифровой защищенной общистерская программа / специализация) Квалификация (степень) специалист	СВЯЗИ»
«Системы подвижной цифровой защищенной с указывается профиль / магистерская программа / специализация) Квалификация (степень)	СВЯЗИ»
«Системы подвижной цифровой защищенной общистерская программа / специализация) Квалификация (степень) специалист	связи»
«Системы подвижной цифровой защищенной о указывается профиль / магистерская программа / специализация) Квалификация (степень) специалист (бакалавр / магистр / специалист)	<u>связи»</u>

Нижний Новгород

1. Место и цели дисциплины в структуре ОПОП

Данная дисциплина относится к базовой части ОПОП и обязательна для освоения в 10 семестре 5 года обучения.

Целями освоения дисциплины являются:

- изучение теории дискретных сигналов и дискретных линейных систем, методов проектирования и расчета цифровых фильтров;
- освоение методов обработки сигналов с помощью цифровых вычислительных устройств, включая цифровые фильтрацию и спектральный анализ

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (код компетенции, уровень освоения – при наличии в карте компетенции)	Планируемые результаты обучения по дисциплине (модулю), характеризующие этапы формирования компетенций
ОПК-3 Способность применять положения теорий электрических цепей, радиотехнических сигналов, распространения радиоволн, цифровой обработки сигналов, информации и кодирования, электрической связи для решения профессиональных задач	31 Знать положения теорий электрических цепей, радиотехнических сигналов, распространения радиоволн, цифровой обработки сигналов. У1 Уметь применять положения теорий электрических цепей, радиотехнических сигналов, распространения радиоволн, цифровой обработки сигналов, информации и кодирование, электрической связи для решения профессиональных задач В1 Владеть опытом применения положений теорий
Этап освоения: завершающий	электрических цепей, радиотехнических сигналов, распространения радиоволн, цифровой обработки сигналов, информации и кодирование, электрической связи для решения профессиональных задач

3. Структура и содержание дисциплины

Объем дисциплины (модуля) составляет 3 зачётных единицы, всего 108 часов, из которых 65 часов составляет контактная работа обучающегося с преподавателем (32 часа занятия лекционного типа, 32 часа занятия лабораторного типа, в том числе 2 часа - мероприятия текущего контроля успеваемости, 1 час - мероприятия промежуточной аттестации), 43 часа составляет самостоятельная работа обучающегося.

Содержание дисциплины

Наименование и краткое содержание разделов и тем дисциплины (модуля),	Всен (час	Ко	нта	IKTI	ная ра с пр	бота репод	ава	бота	во в			тв	ии						
форма промежуточной аттестации по дисциплине (модулю)					Занятия	лекционного типа		Занятия	семинарского типа		Занятия	лабораторного	типа	Всег	0		Само ельн рабо обуч ося,	ая та аю	щег
	Очная	Оппо заоппав	20011119.0	Очная	Очно-заочная	Заопная	Очная	Очно-заочная	Заочная	Очная	Очно-заочная	Заочная	Очная	Ourro acominad	Заочная	Очная	Orrio coorriod	Заочная	
1. Дискретные сигналы и системы Классификация сигналов и систем. Дискретные сигналы и их описание. Дискретные линейные системы с постоянными параметрами и их характеристики. Линейные разностные уравнения с постоянными коэффициентами. Представление дискретных сигналов и систем в частотной области. Дискретное во времени преобразование Фурье (ДВПФ). Дискретизация сигналов с непрерывным временем. Частотно-временные деформации дискретного сигнала.	30			10						10			20			10			
2. Z-преобразование Прямое и обратное Z- преобразования и их связь с ДВПФ. Свойства Z-преобразования. Решение разностных уравнений с применением Z- преобразования. Передаточная (системная) функция.	22			6						6			12			10			
3.Дискретное преобразование Фурье (ДПФ). Представление периодических последовательностей дискретным рядом Фурье (ДРФ). Представление по Фурье последовательности конечной длительности – ДПФ. Свойства ДПФ. Линейная свертка конечных	23			6						6			12			11			

последовательностей на основе ДПФ.												
4. Анализ и проектирование цифровых фильтров (ЦФ). Частотные и временные характеристики цифровых фильтров. КИХ и БИХ - фильтры. Простейшие КИХ и БИХ - фильтры 1-го и 2-го порядков и их применения. Основные структурные схемы, используемые при построении БИХ - и КИХ - фильтров. Расчет БИХ - фильтров. Методы инвариантности импульсной характеристики и билинейного преобразования. КИХ - фильтры с линейной фазо-частотной характеристикой (ФЧХ), виды их и свойства. Расчет КИХ - фильтров с линейной ФЧХ. Методы взвешивания и частотной выборки. Расчет оптимальных КИХ – фильтров с минимаксной ошибкой.	32		10			10		20		12		
В т.ч. текущий контроль	2					2		2				
Промежуточная аттестация ЗАЧЕТ												

4. Образовательные технологии

В соответствии с рабочей программой и тематическим планом изучение дисциплины проходит в виде аудиторной и самостоятельной работы студентов. Учебный процесс в аудитории осуществляется в форме лекционных и лабораторных занятий.

Образовательные технологии, способствующие формированию компетенций используемые на занятиях лекционного типа:

- лекции с проблемным изложением учебного материала.
- демонстрация работы современных пакетов прикладных программ,
- коллективное обсуждение результатов компьютерного эксперимента,
- Работа студента в микрогруппах с последующей презентацией результатов и обсуждением достигнутого.

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа проводится обучающимися с помощью основной и дополнительной учебной литературы и контролируется на зачете.

Учебно-методическое обеспечение самостоятельной работы – основная и дополнительная литература.

4

- 6. **Фонд оценочных средств для промежуточной аттестации по дисциплине**, включающий:
 - 6.1 Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, навыков), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования

(ОПК-3) способность применять положения теорий электрических цепей, радиотехнических сигналов, распространения радиоволн, цифровой обработки сигналов, информации и кодирование, электрической связи для решения профессиональных задач

Индикаторы	Критерии оцен	нивания (дескрипторы)
компетенции	«не зачтено»	«зачтено»
Знания	Наличие грубых ошибок в основном	Знание основного материала без ошибок или
Знать положения	материале	с рядом негрубых ошибок
теорий электрических	_	
цепей,		
радиотехнических		
сигналов,		
распространения		
радиоволн, цифровой		
обработки сигналов		
Умения	Наличие грубых ошибок при	Способность решения основных
Уметь применять	решении стандартных задач	стандартных задач без ошибок или с
положения теорий		несущественными ошибками
электрических цепей,		
радиотехнических		
сигналов,		
распространения		
радиоволн, цифровой		
обработки сигналов,		
информации и		
кодирование,		
электрической связи		
для решения		
профессиональных		
задач		
<u>Навыки</u>	Отсутствие навыка	Владение навыком в минимальном или
положений теорий		большем объёме.
электрических цепей,		
радиотехнических		
сигналов,		
распространения		
радиоволн, цифровой		
обработки сигналов,		
информации и		
кодирование,		
электрической связи		
для решения		
профессиональных		
задач		
Шкала оценок по	0 – 50 %	50 – 100 %
проценту правильно		
выполненных		
контрольных заданий		

6.2 Описание шкал оценивания

Итоговый контроль качества усвоения студентами содержания дисциплины проводится в виде зачета, на котором определяется:

- уровень усвоения студентами основного учебного материала по дисциплине;
- уровень понимания студентами изученного материала
- способности студентов использовать полученные знания для решения конкретных задач.

Зачет проводится в устной форме и заключается в ответе студентом на теоретические вопроса курса (с предварительной подготовкой) и последующем собеседовании в рамках тематики курса. Собеседование проводится в форме вопросов, на которые студент должен дать краткий ответ. Практическая часть зачета предусматривает решение задачи.

Критерии оценок.

Оценка	Уровень подготовки						
Зачтено	Минимально достаточный уровень подготовки присутствует. Студент показывает минимальный уровень теоретических знаний, делает существенные ошибки, но при ответах на наводящие вопросы, может правильно сориентироваться и в общих чертах дать правильный ответ. Студент посещал практические занятия. Выполнение контрольных экзаменационных заданий от 50 до 100%.						
Не зачтено	Подготовка недостаточная и требует дополнительного изучения материала. Студент дает ошибочные ответы, как на теоретические вопросы билета, так и на наводящие и дополнительные вопросы экзаменатора. Выполнение контрольных экзаменационных заданий до 50%.						

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине, характеризующих этапы формирования компетенций.

Для оценивания результатов обучения в виде <u>знаний</u> используются следующие процедуры и технологии:

- устные и письменные ответы на вопросы.

Для оценивания результатов обучения в виде <u>умений</u> и <u>владений</u> используются следующие процедуры и технологии:

- практические контрольные задания.

6.4. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Типовые задания для текущего контроля успеваемости.

- 1. По каким признакам осуществляется классификация сигналов и систем?
- 2. Приведите примеры дискретных во времени сигналов.
- 3. Дайте определение понятия "дискретная линейная система с постоянными

параметрами (ЛПП-система)".

- 4. Что такое импульсная характеристика ЛПП-системы?
- 5. Каково соотношение, определяющее выходной отклик ЛПП-системы на произвольный входной сигнал?
- 6. Каковы условия устойчивости и физической реализуемости ЛПП-системы?
- 7. Что такое частотная характеристика ЛПП-системы?
- 8. Определите понятие "спектральная характеристика" дискретного сигнала.
- 9. Сформулируйте условия дискретизации во времени аналогового видеосигнала.
- 10. Как дискретизовать во времени узкополосный аналоговый радиосигнал?
- 11. Поясните процедуру квадратурного разложения узкополосного радиосигнала.
- 12. Как выполняется процедура уменьшения частоты дискретизации дискретного сигнала?
- 13. Как реализовать процедуру увеличения частоты дискретизации дискретного сигнала?
- 14. Что такое Z-преобразование?
- 15. Перечислите свойства Z-преобразования.
- 16. Что такое передаточная (системная) функция ЛПП- системы?
- 17. Напишите дискретный ряд Фурье.
- 18. Что такое ДПФ?
- 19. Каковы свойства ДПФ?
- 20. Что такое циклическая и линейная свертки?
- 21. Как вычисляется "быстрая" линейная свертка?
- 22. Что такое КИХ и БИХ-фильтры?
- 23. Приведите пример КИХ-фильтра 1-го порядка.
- 24. Приведите пример БИХ-фильтра 1-го порядка.
- 25. Что такое прямая и каноническая структуры ЦФ?
- 26. Что такое каскадная и параллельная структуры ЦФ?
- 27. Каковы особенности реализации структур КИХ-фильтров?
- 28. Каковы эффекты квантования параметров ЦФ?
- 29. В чем сущность метода билинейного преобразования?
- 30. Что такое метод инвариантности импульсной характеристики?
- 31. Как проектируются БИХ-фильтры стандартных типов: ФНЧ, ФВЧ, ФПП,ФПЗ?
- 32. Когда необходимо машинное проектирование БИХ-фильтров?
- 33. Каковы условия линейности ФЧХ КИХ-фильтра?
- 34. Каковы разновидности КИХ- фильтров с линейной ФЧХ и их частотные характеристики?
- 35. В чем сущность метода взвешивания?
- 36. В чем сущность метода частотной выборки?
- 37. Поясните идею метода чебышевской оптимизации при проектировании КИХ-фильтра.
- 38. По каким признакам осуществляется классификация сигналов и систем?
- 39. Приведите примеры дискретных во времени сигналов.
- 40. Дайте определение понятия "дискретная линейная система с постоянными параметрами (ЛПП-система)".
- 41. Что такое импульсная характеристика ЛПП-системы?
- 42. Каково соотношение, определяющее выходной отклик ЛПП-системы на произвольный входной сигнал?
- 43. Каковы условия устойчивости и физической реализуемости ЛПП-системы?
- 44. Что такое частотная характеристика ЛПП-системы?
- 45. Определите понятие "спектральная характеристика" дискретного сигнала.
- 46. Сформулируйте условия дискретизации во времени аналогового видеосигнала.
- 47. Как дискретизовать во времени узкополосный аналоговый радиосигнал?
- 48. Поясните процедуру квадратурного разложения узкополосного радиосигнала.
- 49. Как выполняется процедура уменьшения частоты дискретизации дискретного

сигнала?

- 50. Как реализовать процедуру увеличения частоты дискретизации дискретного сигнала?
- 51. Что такое Z-преобразование?
- 52. Перечислите свойства Z-преобразования.
- 53. Что такое передаточная (системная) функция ЛПП- системы?
- 54. Напишите дискретный ряд Фурье.
- 55. Что такое ДПФ?
- 56. Каковы свойства ЛПФ?
- 57. Что такое циклическая и линейная свертки?
- 58. Как вычисляется "быстрая" линейная свертка?
- 59. Что такое КИХ и БИХ-фильтры?
- 60. Приведите пример КИХ-фильтра 1-го порядка.
- 61. Приведите пример БИХ-фильтра 1-го порядка.
- 62. Что такое прямая и каноническая структуры ЦФ?
- 63. Что такое каскадная и параллельная структуры ЦФ?
- 64. Каковы особенности реализации структур КИХ-фильтров?
- 65. Каковы эффекты квантования параметров ЦФ?
- 66. В чем сущность метода билинейного преобразования?
- 67. Что такое метод инвариантности импульсной характеристики?
- 68. Как проектируются БИХ-фильтры стандартных типов: ФНЧ, ФВЧ, ФПП,ФПЗ?
- 69. Когда необходимо машинное проектирование БИХ-фильтров?
- 70. Каковы условия линейности ФЧХ КИХ-фильтра?
- 71. Каковы разновидности КИХ- фильтров с линейной Φ ЧХ и их частотные характеристики?
- 72. В чем сущность метода взвешивания?
- 73. В чем сущность метода частотной выборки?
- 74. Поясните идею метода чебышевской оптимизации при проектировании КИХ-фильтра.

Экзаменационные вопросы для оценки сформированности компетенций ОПК-3

- 1. Дискретные сигналы (последовательности) и их представление. Синусоиды дискретного времени и их особенности в сравнении с синусоидами непрерывного времени.
- 2. Дискретные линейные системы с постоянными параметрами (ДЛПП-системы) и их описание: во временной области (импульсная характеристика); на основе линейных разностных уравнений (РУ).
- 3. Дискретные линейные системы с постоянными параметрами (ДЛПП-системы) и их описание: в частотной области (частотная характеристика); в комплексной z-плоскости (передаточная характеристика).
- 4. Связь различных характеристик ДЛПП-системы между собой и примеры их вычисления.
- 5. Дискретно-временная свертка, ее свойства. Пример вычисления свертки.
- 6. Устойчивость и физическая реализуемость ДЛПП-системы.
- 7. Представление дискретных сигналов в частотной области. Дискретное во времени преобразование Фурье (ДВПФ) и его свойства. Примеры вычисления прямого и обратного ДВПФ.
- 8. Дискретизация сигналов непрерывного времени: теорема отсчетов для видеосигналов (формулировка и доказательство);
- 9. Дискретизация сигналов непрерывного времени: теорема отсчетов для радиосигналов (формулировка и доказательство);
- 10. Частотно-временные деформации дискретного сигнала: уменьшение частоты дискретизации в целое число раз (прореживание, децимация); увеличение частоты дискретизации в целое число раз (интерполяция).
- 11. Z-преобразование (прямое и обратное): свойства прямого z-преобразования; область сходимости. Примеры вычисления прямого и обратного Z-преобразования.

- 12. Z-преобразование (прямое и обратное): решение разностных уравнений с помощью z-преобразования. Примеры вычисления прямого и обратного Z-преобразования.
- 13. Z-преобразование (прямое и обратное): передаточная (системная) функция. Примеры вычисления прямого и обратного Z-преобразования.
- 14. Дискретное преобразование Фурье (ДПФ): представление периодических последовательностей дискретным рядом Фурье (ДРФ); представление по Фурье последовательности конечной длительности (ДПФ).
- 15. Дискретное преобразование Фурье (ДПФ): свойства ДПФ; примеры вычисления ДПФ.
- 16. Дискретное преобразование Фурье (ДПФ): реализация линейной свертки с помощью ДПФ («быстрая» свертка); связь ДВПФ и ДПФ.
- 17. Примеры КИХ-фильтров первого и второго порядков. Их частотные и временные характеристики.
- 18. Примеры БИХ-фильтров первого и второго порядков. Их частотные и временные характеристики.
- 19. Основные структурные схемы при построении БИХ-фильтров: прямая и каноническая структуры.
- 20. Основные структурные схемы при построении БИХ-фильтров: каскадная и параллельная структуры.
- 21. Основные структурные схемы при построении КИХ-фильтров: прямая, каскадная и структура на основе быстрой свертки.
- 22. Основные структурные схемы при построении КИХ-фильтров: структуры с частотной выборкой.
- 23. Расчет БИХ-фильтров по методу инвариантности импульсной характеристики.
- 24. Расчет БИХ-фильтров стандартных типов методом билинейного преобразования.
- 25. КИХ-фильтры с линейной фазо-частотной характеристикой, виды и свойства их импульсных и частотных характеристик.
- 26. Методы расчета КИХ-фильтров с линейной ФЧХ.

Типовые задачи для оценивания сформированности умений и навыков по компетенциям ОПК-3

Залание 1

Построить цифровой фильтр нижних частот с частотой среза 0.15, подавлением вне полосы не менее 40Дб и монотонной амплитудно-частотной характеристикой в полосе пропускания. Изобразить частотную и импульсную характеристики фильтра. Продемонстрировать работу фильтра на примере полигармонического сигнала.

Задание 2

Построить цифровой фильтр верхних частот с частотой среза 0.25, подавлением вне полосы не менее 30Дб и монотонной амплитудно-частотной характеристикой в полосе пропускания. Изобразить частотную и импульсную характеристики фильтра. Продемонстрировать работу фильтра на примере полигармонического сигнала.

Задание 3

Построить полосно-пропускающий цифровой фильтр с границами полосы пропускания [0.15 0.25], подавлением вне полосы не менее 40Дб. Изобразить частотную и импульсную характеристики фильтра. Продемонстрировать работу фильтра на примере полигармонического сигнала.

Залание 4

Построить полосно-запирающий цифровой фильтр с границами полос пропускания [0.2 0.35], подавлением в полосе запирания не менее 30Дб. Изобразить частотную и импульсную характеристики фильтра. Продемонстрировать работу фильтра на примере полигармонического сигнала.

6.5. Методические материалы, определяющие процедуры оценивания.

Положение «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в ННГУ», утверждённое приказом ректора ННГУ от 13.02.2014 г. №55-ОД,

Положение о фонде оценочных средств, утвержденное приказом ректора ННГУ от 10.06.2015 №247-ОД.

7. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- 1. Оппенгейм А., Шафер Р. Цифровая обработка сигналов. М.:Техносфера, 2009. 856 с
- б) дополнительная литература:
- 1. Басараб, М.А. Цифровая обработка сигналов и изображений в радиофизических приложениях. М.: Физматлит, 2007. 544 с
 - в) программное обеспечение и Интернет-ресурсы
 - 1.http://www.labview.ru
 - 2.http://www.dsp-book.narod.ru
 - 3.http://www.pselab.ru

8. Материально-техническое обеспечение дисциплины

Компьютерный класс, доска, мел, мультимедийный проектор, компьютер, подключенный к сети Интернет, среда программирования LabView.

Программа составлена в соответствии с требованиями ФГОС ВО с учетом рекомендаций и ОПОП ВПО по специальности 10.05.02 «Информационная безопасность телекоммуникационных систем».

Автор (ы):	Ивлев Д.Н
Рецензент (ы)
Заведующий ка	федрой: Е.С.Фитасов

Программа одобрена на заседании методической комиссии радиофизического факультета от <25> июня 2020 года, протокол № 03/20 .