МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное

образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт биологии и биомедицины		
	УТВЕРЖ	СДАЮ:
Директор ИББМ	Ведунс	ова М.В.
« 29 »	августа	2020 г.

Рабочая программа дисциплины (модуля)

Аналитическая химия

(наименование дисциплины (модуля))

Уровень высшего образования

Специалитет

Направление подготовки / специальность

30.05.03 Медицинская кибернетика

Квалификация (степень)

Врач-кибернетик

Форма обучения

Очная

1. Место и цели дисциплины в структуре ОПОП

Дисциплина «Аналитическая химия» относится к базовой части Блока 1 ОПОП по специальности **30.05.03 Медицинская кибернетика**, является обязательной для освоения студентами во 2 семестре обучения.

Необходимой базой для освоения аналитической химии являются курсы химии, математики и физики, преподаваемые в средних общеобразовательных школах или в средних специальных учебных заведениях. Для успешного и полного освоения разделов аналитической химии и получения навыков выполнения анализа необходимы знания химических свойств, состава и строения простых веществ и химических соединений, понимание взаимосвязи строения вещества и протекающих химических реакций, умение прогнозирования свойств веществ на основе закономерностей, вытекающих из периодического закона и Периодической системы элементов. Освоение современных инструментальных методов анализа (физических и физико-химических) требует знания фундаментальных разделов физики. Грамотная статистическая обработка результатов химического анализа невозможна без освоения фундаментальных разделов математики. Для наиболее полного использования приемов аналитической химии в анализе объектов окружающей среды, биологических и технологических сред требуется владение программным обеспечением компьютеров и их использование для планирования химических исследований и обработки экспериментальных данных. В этой связи, для успешного изучения курса аналитической химии рекомендуется предварительное освоение материала таких дисциплин как общая химия, физика, математика, информатика и современные информационные технологии.

Знания и навыки, приобретенные в курсе изучения аналитической химии, необходимы для успешного освоения всех дисциплин базовой и вариативной части профессионального цикла и успешного проведения исследовательской работы.

Целями освоения дисциплины «Аналитическая химия» являются: изучение теоретических основ современных химических, физико-химических (инструментальных) и физических методов анализа и исследования, получение навыков выполнения аналитических операций, сопоставление различных методов анализа и выбор оптимального для решения конкретной аналитической задачи.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции	Планируемые результаты обучения по дисциплине (модулю), характеризующие		
	этапы формирования компетенций		
ОПК-5 - готовность к использованию основных физико-химических, математических и иных естественнонаучных понятий и методов при решении профессиональных задач	З (ОПК-5) Знать: основные физико- химические, математические и иные естественнонаучные понятия и методы, необходимые при решении профессиональных задач. У (ОПК-5) Уметь: применять различные физико-химические, математические и иные естественнонаучные понятия и методы, необходимые при решении профессиональных задач. В (ОПК-5) Владеть: навыками различных физико-химических, математических и иных естественнонаучных методов при решении		
	профессиональных задач.		

Окончательное завершение формирования компетенций, предусмотренных в рамках данной дисциплины, происходит при прохождении производственных практик и выполнения ВКР.

3. Структура и содержание дисциплины (модуля)

Объем дисциплины (модуля) составляет 4 зачетные единицы, всего 144 часа, из которых 66 часов составляет контактная работа обучающегося с преподавателем (32 часа занятия лекционного типа, 32 часов лабораторные работы, 2 часа мероприятия промежуточной аттестации), 78 часа составляет самостоятельная работа обучающегося (в т.ч. включая 36 часов подготовки к экзамену).

Содержание дисциплины

Наименование и краткое			В том числе	2	
содержание разделов и тем дисциплины (модуля), форма промежуточной	Всего (часы)	Контактная работа (работа во взаимодействии с преподавателем), часы, из них		Самостоятель ная работа обучающегос я, часы	
аттестации по дисциплине	Всег	Занятия лекционного типа	Занятия лабораторного типа	Всего	Самост ная ра обучан я, ча
Тема 1. Предмет, цели и задачи аналитической химии. Классификация аналитических методов. Характеристика аналитических реакций и реагентов.	4	2		2	2
Тема 2. Состояние вещества в растворе. Ионные равновесия.	2	2		2	
Тема 3. раствор-осадок малорастворимого электролита.	6	2	2	4	2
Тема 4. Реакции окисления-восстановления в аналитической химии.	6	2	2	4	2
Тема 5. Кислотно-основные равновесия. Теории кислот и оснований.	4	2	2	4	
Тема 6. Комплексные соединения в аналитической химии.	4	2	2	4	
Тема 7. Количественный анализ. Основные принципы и классификация методов количественного анализа. Отбор и подготовка проб к анализу. Гравиметрия.	4	2	2	4	
Тема 8. Титриметрический анализ. Классификация методов, требования к реакциям, применяемым в титриметрии. Окислительновосстановительное, кислотноосновное и комплексонометрическое титрование. Погрешности титрования.	8	2	4	6	
Тема 9.	4	2	2	4	

F	1	1	1		1
Методы разделения и					
концентрирования в аналитической					
химии.					
Тема 10.	4	2	2	4	
Представление результатов					
химического анализа. Основы					
химической метрологии.					
Классификация погрешностей					
измерений. Оценка сходимости					
результатов. Правильность анализа и					
устранение систематических					
погрешностей. Понятие о стандартных					
образцах.					
Тема 11.	4	2	2	4	
Классификация физических и физико-				•	
химических (инструментальных)					
методов анализа. Основные					
характеристики методов и требования,					
предъявляемые к ним.					
Тема 12.	6	2	4	6	
Методы молекулярного спектрального		_	· .		
анализа. Анализ по ИК спектрам.					
Спектрофотометрия и					
фотоколориметрия в видимой области					
спектра.					
Тема 13.	2	2		2	
Элементный спектральный анализ.		2		2	
Атомно-эмиссионный спектральный					
анализ. Атомно-абсорбционный					
метод.					
Тема 14.	6	2	4	6	
Электрохимические методы анализа.			7	U	
Общая характеристика и					
классификация электрохимических					
методов. Потенциометрия.					
Кондуктометрия.					
Тема 15.	2	2		2	
Теми 13. Хроматографические методы.		<u> </u>			
Принципы метода хроматографии.					
Качественный и количественный					
хроматографический анализ.					
хроматографический анализ. Тема 16.		2	4		
	6	\ \(\triangle \)	4	6	
Анализ промышленных, природных и биологических объектов.					
	2				
В т.ч. текущий контроль	2				
Промежуточная аттестация в форме экзамена					
Итого	144	л аттестация в ф	орию экзаимена	66	78
RITUTU	144			00	7.0

Текущий контроль успеваемости реализуется в рамках семинарских занятий. Промежуточная аттестация осуществляется на экзамене.

Содержание дисциплины «Аналитическая химия»

Раздел 1

Введение.

Предмет аналитической химии, ее структура; место в системе наук, связь с практикой. Виды анализа: изотопный, элементный, структурно-групповой (функциональный), молекулярный, вещественный, фазовый. Химические, физические и биологические методы анализа. Макро-, микро- и ультрамикроанализ.

Современное состояние и тенденции развития аналитической химии: инструментализация, автоматизация, математизация, миниатюризация, увеличение доли физических методов, переход к многокомпонентному анализу, создание сенсоров и тестметодов. Научная химико-аналитическая литература.

Типы химических реакций и процессов в аналитической химии.

Основные типы химических реакций в аналитической химии: кислотно-основные, комплексообразования, окисления-восстановления. Используемые процессы: осаждение-растворение, экстракция, сорбция. Состояние веществ в идеальных и реальных системах. Поведение электролитов и неэлектролитов в растворах. Электролитическая диссоциация. Теория Дебая—Хюккеля. Коэффициенты активности. Общая и равновесная концентрации. Графическое описание равновесий.

Кислотно-основные реакции. Современные представления о кислотах и основаниях (теория Льюиса). Теория Бренстеда-Лоури. Константы кислотности и основности. Ионное произведение воды. Константа автопротолиза. Буферные растворы и их свойства. Буферная емкость. Вычисления рН растворов кислот и оснований, многоосновных кислот и оснований, смеси кислот и оснований.

Реакции комплексообразования. Типы комплексных соединений, используемых в аналитической химии. Классификация комплексных соединений (внутрисферные комплексы и ионные ассоциаты). Свойства комплексных соединений, имеющие аналитическое значение: устойчивость, растворимость, окраска, летучесть. Способы повышения чувствительности и селективности анализа с использованием комплексных соединений.

Окислительно-восстановительные реакции. Электродный потенциал. Уравнение Нернста. Стандартный и формальный потенциалы. Направление реакции окисления и восстановления. Факторы, влияющие на направление окислительно-восстановительных реакций. Основные неорганические и органические окислители и восстановители, применяемые в анализе.

Процессы осаждения и соосаждения. Равновесие в системе раствор - осадок. Осадки и их свойства. Произведение растворимости. Условия образования осадка. Факторы, влияющие на растворимость осадков: температура, ионная сила, действие одноименного иона.

Методы обнаружения и идентификации.

Задачи и выбор метода обнаружения и идентификации химических соединений. Идентификация атомов, ионов и веществ. Дробный и систематический анализ. Микрокристаллоскопический анализ. Капельный анализ. Анализ растиранием порошков. Хроматографические методы качественного анализа. Экспрессный качественный анализ в производственных и полевых условиях. Примеры практического применения методов обнаружения.

Гравиметрический метод анализа.

Сущность гравиметрического анализа, преимущества и недостатки метода. Общая схема определений. Требования к осаждаемой и гравиметрической формам. Примеры практического применения гравиметрического метода анализа.

Титриметрические методы анализа.

Методы титриметрического анализа. Классификация. Требования, предъявляемые к реакции в титриметрическом анализе. Виды титриметрических определений: прямое, обратное, косвенное титрование. Способы выражения концентраций растворов в титриметрии. Эквивалент. Молярная масса эквивалента. Первичные стандарты, требования к ним. Фиксаналы. Вторичные стандарты. Виды кривых титрования. Скачок титрования. Точка эквивалентности и конечная точка титрования.

Кислотно-основное титрование. Построение кривых титрования. Влияние величины констант кислотности или основности, концентрации кислот или оснований, температуры, ионной силы на величину скачка на кривой титрования. Кислотно-основные

индикаторы. Погрешности титрования при определении сильных и слабых кислот и оснований, смесей кислот и оснований. Примеры практического применения.

Окислительно-восстановительное титрование. Построение кривых титрования. Факторы, влияющие на величину скачка на кривой титрования. Методы окислительновосстановительного титрования (перманганатометрия, йодометрия и йодиметрия, бихроматометрия). Первичные и вторичные стандарты. Индикаторы.

Осадительное титрование. Способы обнаружения конечной точки титрования; индикаторы. Погрешности титрования. Примеры практического применения.

Комплексометрическое титрование. Использование аминополикарбоновых кислот (комплексонов) в комплексонометрии. Металлохромные индикаторы и требования, предъявляемые к ним. Примеры практического применения.

Методы выделения, разделения и концентрирования.

Основные методы разделения и концентрирования, их роль в химическом анализе. Сочетание методов разделения и концентрирования с методами определения; гибридные методы.

Метрологические основы химического анализа.

Основные стадии химического анализа. Выбор метода анализа и составление схем анализа. Основные метрологические понятия и представления: измерение, методы и средства измерений, погрешности. Аналитический сигнал и помехи. Способы определения содержания по данным аналитических измерений.

Основные характеристики метода и методики анализа: правильность и сходимость, предел обнаружения, нижняя и верхняя границы определяемых содержаний.

Классификация погрешностей анализа. Систематические и случайные погрешности. Погрешности отдельных стадий химического анализа. Способы оценки правильности: использование стандартных образцов, метод добавок, метод варьирования навесок, сопоставление с другими методами. Статистическая обработка результатов измерений. Способы повышения сходимости и правильности анализа.

Раздел 2

Спектроскопические методы анализа.

Спектр электромагнитного излучения. Классификация спектроскопических методов на основе спектра электромагнитного излучения (атомная, молекулярная, абсорбционная, эмиссионная спектроскопия).

Атомно-эмисионный метод. Спектрографический и спектрометрический методы анализа, их особенности, области применения. Качественный и количественный анализ.

Атомно-абсорбционный метод. Возможности, преимущества и недостатки метода, его сравнение с атомно-эмиссионными методами (точность, избирательность, чувствительность, экспрессность). Примеры практического применения атомно-эмиссионного и атомно-абсорбционного методов.

Молекулярная абсорбционная спектроскопия (спектрофотометрия). Основной закон светопоглощения. Отклонения от закона, их причины. Способы определения концентрации веществ. Анализ многокомпонентных систем. Примеры практического применения метода.

Электрохимические методы анализа.

Общая характеристика электрохимических методов. Классификация. Электрохимические ячейки. Индикаторный электрод и электрод сравнения.

Потенциометрия.

Прямая потенциометрия. Измерение потенциала. Индикаторные электроды. Электроды сравнения. Электродная функция, коэффициент селективности, время отклика. Ионометрия. Примеры практического применения ионометрии.

Потенциометрическое титрование. Изменение электродного потенциала в процессе титрования. Способы обнаружения конечной точки титрования. Примеры практического применения.

Кондуктометрия.

Электропроводность растворов и принципы кондуктометрии и кондуктометрического титрования.

Сравнительная характеристика чувствительности и избирательности, областей применения электрохимических методов.

Хроматографические методы анализа.

Определение хроматографии. Понятие о подвижной и неподвижной фазах. Классификация методов по агрегатному состоянию подвижной и неподвижной фаз, по механизму разделения, по технике выполнения. Основные параметры хроматограммы. Качественный и количественный хроматографический анализ.

Основные объекты анализа.

Объекты окружающей среды: воздух, природные и сточные воды, почвы, донные отложения. Характерные особенности и задачи их анализа.

Биологические и медицинские объекты. Аналитические задачи в этой области. Санитарно-гигиенический контроль.

Геологические объекты. Металлы и сплавы. Природные и синтетические органические вещества и элементоорганические соединения, полимеры. Виды анализа таких объектов и соответствующие методы Специальные объекты анализа: токсичные и радиоактивные вещества, токсины в пищевых продуктах, наркотики, взрывчатые и легковоспламеняющиеся вещества, газы, космические объекты.

Лабораторный практикум

№п/п	№ раздела дисциплины	Наименование лабораторных работ
1	1	Частные реакции на анионы. Контрольная задача на анионы (качественный анализ).
2	1	Частные реакции на катионы I-III и VI аналитических групп. Контрольная задача на смесь катионов I, II, III и VI групп (качественный анализ).
3	1	Частные реакции катионов IV, V аналитических групп. Контрольная задача на смесь катионов III-VI групп (качественный анализ).
4	1	Приготовление 0.1 н. раствора серной кислоты. Определение щелочи в растворе (количественный анализ).
5	1	Определение общей жесткости воды. Определение содержания ионов кальция (II) в воде (количественный анализ).
6	2	Определение железа (III) по реакции с роданидом (оптические методы анализа).
7	2	Иодометрическое определение аскорбиновой кислоты (потенциометрические методы анализа)
8	1	Ионометрическое определение нитрат-ионов (потенциометрия).

4. Образовательные технологии

В соответствии с рабочей программой и тематическим планом изучение дисциплины проходит в виде аудиторной и самостоятельной работы студентов. Учебный процесс в аудитории осуществляется в форме лекционных и лабораторных занятий. Лекции читаются с применением мультимедийного оборудования с целью демонстрации современного

аналитического оборудования и возможностей его использования для различных технологических и экологических задач. В рамках лабораторных работ студенты получают навыки проведения анализа реальных объектов.

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа студентов в процессе изучения дисциплины «Аналитическая химия» предполагает чтение учебной и научной литературы, решение задач по тематическим разделам дисциплины. Учебники и задачники имеются в наличии в библиотеке в необходимом количестве, а также доступны на соответствующих Интернетсайтах. Средствами для текущего контроля успеваемости являются контрольные работы и коллоквиум, которые проводятся по итогам изучения тематических разделов дисциплины. По итогам изучения дисциплины предусмотрен экзамен.

К формам текущего контроля успеваемости дисциплины относится следующее:

- Устный опрос
- Контрольная работа «Состояние электролитов в растворе»
- Контрольная работа «Гетерогенные равновесия»
- Контрольная работа «Окислительно-восстановительные реакции»
- Контрольная работа «Гидролиз»

Основу для самостоятельной подготовки студентов составляет *учебно- методическое пособие:*

Кулешова Н.В., Абражеев Р.В., Нипрук О.В. Методическое руководство к лабораторным работам по аналитической химии: Учебно-методическое пособие. Н.Новгород, 2017. 59 с.

Вопросы к устному опросу и контрольным работам представлены в приведенном выше учебно-методическом пособии.

Промежуточная аттестация по итогам освоения дисциплины проходит в форме экзамена.

- 6. Фонд оценочных средств для промежуточной аттестации по дисциплине, включающий:
- 6.1. Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, в которых участвует дисциплина «Аналитическая химия», приведены в таблице

ОПК-5 - готовность использовать основы физико-химических, математических и иных естественнонаучных понятий и методов при решении профессиональных задач

Индикаторы	Критерии оценивания (дескрипторы)						
компетенции	«плохо» «неудовле «удовлетво «хорошо» «очень «отлично» «превосхо						«превосход
		творитель	рительно»		хорошо»		но»
		но»					

7	0	11	2	2	2	2	2
Знать: основные	Отсутствие	Наличие	Знание	Знание	Знание	Знание	Знание
физико-	знаний	грубых	основного	основного	основного	основного	основного и
химические,	материала	ошибок в	материала с	материалом	материала с	материала	дополнител
математические		основном	рядом	с рядом	незначитель	без ошибок	ьного
и иные		материале	негрубых	заметных	ными	И	материала
естественнонауч			ошибок	погрешност	погрешност	погрешност	без ошибок
ные понятия и				ей	ями	ей	И
методы,							погрешност
необходимые							ей
при решении							
профессиональн							
ых задач							
Уметь:	Полное	Отсутстви	Умение	Умение	Умение	Умение без	Умение в
применять	отсутствие	е умения	применять	применять	применять	ошибок	совершенст
различные	умения	применять	различные	различные	различные	применять	ве
физико-	применять	различные	физико-	физико-	физико-	различные	применять
химические,	различные	физико-	химические	химические	химические	физико-	различные
математические	физико-	химическ				химические	физико-
и иные	химические	ие,	, математиче	, математиче	, математиче		химические
естественнонауч		математич	ские и иные	ские и иные	ские и иные	математиче	
ные понятия и	математиче	еские и	естественно	естественно	естественно	ские и иные	, математиче
методы,	ские и иные	иные	научные	научные	научные	естественно	ские и иные
необходимые	естественно	естествен	понятия и	понятия и	понятия и	научные	естественно
при решении	научные	нонаучны	методы,	методы,	методы,	понятия и	научные
профессиональн	понятия и	е понятия	необходим	необходим	необходим	методы,	понятия и
ых задач	методы,	и методы,	ые при	ые при	ые при	необходим	методы,
	необходим	необходи	решении	решении	решении	ые при	необходим
	ые при	мые при	профессион	профессион	профессион	решении	ые при
	решении	решении	альных	альных	альных	профессион	решении
	профессион	профессио	задач при	задач при	задач с	альных	профессион
	альных	нальных	наличии	наличии	небольшим	задач	альных
	задач	задач	существенн	незначитель	И		задач
	34,41	34,441	ых ошибок	ных ошибок	недочетами		34,41
Владеть:	Полное	Отсутстви	Наличие	Посредстве	Достаточно	Хорошее	Всесторонн
навыками	отсутствие	е навыков	минимальн	нное	е владение	владение	ее владение
различных	навыков	различных	ых навыков	владение	навыками	навыками	навыками
физико-	парыков	физико-	различных	навыками	различных	различных	различных
химических,		химическ	физико-	различных	физико-	физико-	физико-
математических		их,	химических	физико-	химических	химических	химических
и иных		математич	AHWIII ICCKIIA	химических	AHMH ICCKHA	AHWII ICCKIIA	Animi Tecknia
естественнонауч		еских и	, математиче	AHWH ICCKHA	, математиче	, математиче	, математиче
ных методов при		иных	ских и иных	, математиче	ских и иных	ских и иных	ских и иных
решении		естествен	естественно	ских и иных	естественно	естественно	естественно
профессиональн		нонаучны	научных	естественно	научных	научных	научных
ых задач		х методов	методов	научных	методов	методов	методов
ых эада т				· ·			
		при решении	при решении	методов	при	при решении	при решении
		профессио	профессион	при решении	решении профессион	профессион	профессион
		нальных	альных	профессион			
					альных	альных	альных
		задач	задач	альных задач	задач	задач	задач
Шкала оценок по	0 – 20 %	21 – 49 %	50 – 69 %	70-79 %	80 – 89 %	90 – 99%	100%
проценту	0 - 20 70	21 - 47 /0	30 - 03 70	10-19 /0	00 - 03 /0	70 - 77/0	100/0
проценту							
выполненных							
контрольных							
заданий							
эадании	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	

6.2 Описание шкал оценивания

Промежуточная аттестация по дисциплине проводится в форме экзамена. Экзамен проводится в устной форме в виде ответа обучающегося на теоретические вопросы курса (с предварительной подготовкой) и последующим собеседованием в рамках тематики курса. Собеседование проводится в форме вопросов, на которые студент должен дать краткий ответ.

К экзамену допускаются обучающиеся, выполнившие все лабораторные работы на момент сдачи экзамена. Выполнение всех работ предусматривает сдачу допусков, выполнение экспериментальной части работ, сдачу отчетов).

Для проведения промежуточного контроля сформированности компетенции используются:

- 1. выполнение всех лабораторных работ, предусмотренных учебной программой;
- 2. ответ по билету.

Критерии оценок

Зачтено	Выполнение лабораторных работ в соответствии с учебным планом, написание и сдача отчетов.
Не зачтено	Невыполнение значительной части лабораторных работ, установленным учебным планом, к окончанию семестра.

Оценка	Уровень подготовки
Превосходно	Превосходная подготовка. Исчерпывающее и логически строгое изложение всех разделов дисциплины. Владение материалом позволяет быстро справиться с видоизмененным заданием. Успешное владение любыми типами расчетных и качественных задач.
Отлично	Отличная подготовка. Твердое знание всех разделов дисциплины. Допускаются незначительные неточности, нарушения в последовательности изложения материала. Владение необходимыми приемами и способами решения всех расчетных и качественных задач.
Очень хорошо	Очень хорошая подготовка. Твердое знание всех разделов дисциплины с рядом неточностей. Владение необходимыми приемами и способами решения основных расчетных и качественных задач.
Хорошо	Хорошая подготовка. Знание основных разделов дисциплины. При изложении материала допускаются незначительные неточности. Владение необходимыми приемами и способами решения основных расчетных и качественных задач.
Удовлетворит ельно	Подготовка, удовлетворяющая минимальным требованиям. Знание основного содержания разделов дисциплины, допускаются грубые неточности, неправильные формулировки, нарушения в последовательности изложения материала. Имеющихся знаний достаточно для освоения дисциплин последующих курсов. Допускаются грубые ошибки в решении расчетных

	задач. Обладает необходимыми приемами и способами решения основных качественных задач.
Неудовлетвор ительно	Не знает значительной части основного содержания разделов дисциплины. Имеющихся знаний недостаточно для освоения дисциплин последующих курсов. Не может решать основные качественные задачи. Необходима дополнительная подготовка для успешного прохождения испытания.
Плохо	Подготовка совершенно недостаточная. Не знает большой части основного содержания разделов дисциплины. Имеющихся знаний совершенно недостаточно для освоения дисциплин последующих курсов. Не может решать простые расчетные задачи.

^{*}информация предоставляется преподавателем, ведущим лабораторные занятия.

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине, характеризующих этапы формирования компетенций

Для оценивания результатов обучения в виде <u>знаний</u> используются следующие процедуры и технологии:

- письменные ответы на вопросы контрольных работ;
- индивидуальный устный ответ по тематике лабораторного занятия;
- собеседование на экзамене

Для оценивания результатов обучения в виде <u>умений и владений</u> используются следующие процедуры и технологии:

- *практические контрольные задания* (ПКЗ), включающие выполнение одной или нескольких задач;
 - выполнение лабораторных работ по данной дисциплине;
 - оформление отчетов по лабораторным работам.

6.4. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций

Примерный перечень тестовых заданий для оценки сформированности <u>знаний</u> компетенции ОПК-5:

- 1. Анализ, при котором пробу предварительно переводят в раствор, называют
 - а) анализ растворов
 - б) жидкий анализ
 - в) анализ мокрым путем
 - г) мокрый анализ
- 2. Наибольшие объемы и массы навесок пробы используют в
 - а) микроанализе
 - б) ультрамикроанализе
 - в) макроанализе
 - г) полумикроанализе
- 3. Расположите в правильной последовательности этапы проведения химического анализа
 - а) измерение аналитического сигнала

- б) подготовка пробы к анализу
- в) отбор пробы
- г) вычисление концентрации и ее погрешности
- 4. Минимальная концентрация (или масса) вещества, при которой его можно обнаружить при выбранных условиях, это:
 - а) предельное разбавление
 - б) предел обнаружения
 - в) открываемый минимум
 - г) минимальное значение

Примерный перечень вопросов (устный опрос, письменные контрольные) для оценки сформированности <u>знаний компетенции ОПК-5:</u>

Пример экзаменационного билета

- 1. Предмет аналитической химии. Структура аналитической химии (качественный и количественный анализ, классификация видов анализа по объему или массе пробы, по природе обнаруживаемых или определяемых частиц, другие виды классификации анализа). Классификация методов анализа (классические, инструментальные).
- 2. Электрохимические методы анализа. Потенциометрия. Электрохимическая ячейка. Типы индикаторных электродов.
- 3. Рассчитайте растворимость оксалата серебра $Ag_2C_2O_4$ в воде, если известно, что $\Pi P = 3.5 \cdot 10^{-11}$.

Пример билета письменной контрольной работы:

1. Допишите и уравняйте следующие химические реакции, используя элек-тронно-ионный метод (метод полуреакции):

$$KMnO_4 + Na_2C_2O_4 + H_2SO_4 \rightarrow MnO_2 + CO_2 + ...$$

$$KMnO_4 + K_2SnO_2 + KOH \rightarrow K_2MnO_4 + ...$$

$$Mn(NO_3)_2 + Pb_3O_4 + HNO_3 \rightarrow Pb(NO_3)_2 + HMnO_4 + H_2O_3$$

2. Вычислите эффективную константу равновесия окислительно-восстанови-тельной реакции при рН 1:

$$ClO_3^- + Mn^{2+} + H^+ \rightarrow Cl_2 + MnO_2 + H_2O$$

Примеры практических заданий для оценки сформированности <u>умений компетенции</u> <u>ОПК-5:</u>

- 1. Обнаружить, какие анионы присутствуют в анализируемом растворе. (Для каждого студента предусматривается индивидуальная задача, в которой могут присутствовать различное количество анионов из следующего перечня: Cl^- , SO_4^{2-} , CO_3^{2-} , PO_4^{3-} , AsO_4^{3-} , NO_3^{-}).
- 2. Обнаружить, какие катионы присутствуют в анализируемом растворе. (Для каждого студента предусматривается индивидуальная задача, в которой могут присутствовать различное количество катионов из следующего перечня: Ag^+ , Pb^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Al^{3+} , Cr^{3+} , Zn^{2+} , Sn^{2+} , Fe^{2+} , Fe^{3+} , Mg^{2+} , Mn^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Hg^{2+} , K^+ , Na^+ , NH_4^+).
- 3. Определить содержание аскорбиновой (ацетилсалициловой) кислоты в препарате.

Примеры вопросов для экзамена:

- 1. Предмет аналитической химии. Структура аналитической химии (качественный и количественный анализ, классификация видов анализа по объему или массе пробы, по природе обнаруживаемых или определяемых частиц, другие виды классификации анализа). Классификация методов анализа (классические, инструментальные).
- 2. Этапы химического анализа. Постановка задачи, выбор метода и схемы анализа. Отбор пробы, подготовка пробы к анализу. Измерение аналитического сигнала. Обработка результатов измерений. Способы определения концентрации вещества по величине аналитического сигнала (метод градуировочного графика, метод добавок, косвенные методы).
- 3. Единицы количества вещества и способы выражения концентрации (массовая доля, процентная концентрация, титр, титр вещества по веществу, молярная концентрация, молярная концентрация эквивалента). Эквивалент, фактор эквивалентности. Пересчет одного способа выражения концентрации раствора в другой.
- 4. Погрешности химического анализа. Случайные, систематические и грубые погрешности. Их причины. Воспроизводимость, сходимость и правильность анализа. Проверка правильности результатов анализа. Элементы математической статистики при оценке случайных погрешностей. Критерий отбраковки результатов анализа. Представление результатов химического анализа в интервальном варианте.
- 5. Теория электролитической диссоциации. Диссоциация электролитов. Степень диссоциации. Константа диссоциации. Закон разбавления Оствальда.
- 6. Влияние электростатических взаимодействий на равновесие. Активность ионов, коэффициент активности, ионная сила раствора. Теория Дебая-Хюккеля. Предельный и расширенный закон Дебая-Хюккеля. Буферные растворы общей ионной силы.
- 7. Электролитическая диссоциация воды. Ионное произведение воды. Равновесие H⁺ и OH⁻ в водных растворах. Показатель концентрации ионов водорода pH и показатель концентрации гидроксид-ионов pOH. Расчет pH в водных растворах сильных и слабых кислот и оснований (формулы с выводом). Буферные растворы. Сущность буферного действия. Буферная ёмкость. Расчет pH буферных растворов. Уравнение Гендерсона.
- 8. Равновесия в растворах гидролизующихся солей. Четыре типа солей: соль образованная сильным основанием и слабой кислотой, слабым основанием и сильной кислотой, слабым основанием и слабой кислотой, сильным основанием и сильной кислотой. Расчет рН водных растворах гидролизующихся солей (формулы с выводом).
- 9. Окислительно-восстановительные реакции. Их применение в аналитической химии. Процессы окисления и восстановления. Окислители и восстановители. Окислительновосстановительные пары. Уравнивание окислительно-восстановительных реакций электронно-ионным (методом полуреакций). Уравнение методом Нернста. Стандартные Направление протекания окислительнопотенциалы. восстановительных реакций. Условные потенциалы. Влияние кислотности на направление окислительно-восстановительных реакций. Глубина протекания окислительно-восстановительных реакций. константы равновесия Связь стандартных потенциалов окислительно-восстановительных пар.
- 10. Равновесия в гетерогенной системе. Гетерогенные системы. Концентрированные и разбавленные растворы. Насыщенные и ненасыщенные растворы. Равновесия в насыщенных растворах труднорастворимых электролитов. Произведение растворимости. Условие выпадения осадка. Расчет растворимости труднорастворимых электролитов В воде. Влияние одноименных индифферентных электролитов, кислотности на растворимость труднорастворимых солей.

6.5. Методические материалы, определяющие процедуры оценивания.

- 1. Положение «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в ННГУ», утверждённое приказом ректора ННГУ от 29.12.2017 г. № 630-ОД.
- 2. Положение о фонде оценочных средств, утверждённое приказом ректора ННГУ от 10.06.2015 г. № 247-ОД

7. Учебно-методическое и информационное обеспечение дисциплины (модуля) «Аналитическая химия»

Теоретическая подготовка к лабораторным занятиям и промежуточной аттестации может осуществляться по следующим литературным источникам:

а) основная литература:

- 1. Васильев В.П. Аналитическая химия. Книга 1. Титриметрические и гравиметрические методы анализа. Серия «Высшее образование». М.: Дрофа, 2009. 368 с. (58 экземпляров в библиотеке ННГУ).
- 2. Васильев В.П. Аналитическая химия. Книга 2. Физико-химические методы анализа методы анализа. Серия «Высшее образование». М.: Дрофа, 2009. 384 с. (42 экземпляра в библиотеке ННГУ).

б) дополнительная литература:

1. Крылов В.А., Сергеев Г.М., Елипашева Е.В. Введение в хроматографические методы анализа. Ионный обмен и ионная хроматография. Учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2010. Режим доступа: http://www.unn.ru/books/met_files/Krylov1.pdf.

в) программное обеспечение и Интернет-ресурсы:

- Е.Н. Дорохова, Г.В. Прохорова Задачи и вопросы по аналитической химии. М.: Мир, 2001. [Электронный ресурс]: http://www.chem.msu.ru/rus/books/2001-2010/dorohova/all.pdf
- 2. Шаповалова Е.Н., Пирогов А.В. Хроматографические методы анализа. Методическое пособие для специального курса. МГУ, 2007. [Электронный ресурс]: http://www.chem.msu.ru/rus/teaching/analyt/chrom/part1.pdf
- 3. Сайт научного совета по аналитической химии PAH: http://www.rusanalytchem.org

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой также

предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений.

8. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованы специализированной мебелью и техническими средствами обучения (демонстрационное оборудование — проектор, ноутбук, экран). Помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

Для проведения лабораторных работ по аналитической химии химический факультет и кафедра аналитической химии располагают лабораториями, оснащенными посудой, реактивами и оборудованием, необходимыми для проведения качественного и количественного анализа. Лаборатория физико-химических методов анализа оборудована газовым хроматографом Хромос-1000, спектрофотометрами КФК-2, рН-метрами, ионометром универсальным 7В-74 и другим лабораторным оборудованием. Для чтения лекций и проведения практических занятий университет располагает необходимым аудиторным фондом.

Программа составлена в соответствии с требованиями ФГОС ВО с учетом рекомендаций и ОПОП ВО по специальности **30.05.03 Медицинская кибернетика**.

Авторы	_ д.х.н., проф. каф.	аналитической химии	и ХФ О.В. Нипрук
Рецензент			
Заведующий кафедрой анал	итической химии Х		1 D A IC
		Д.Х.Н.,	проф. В.А. Крылов

Программа одобрена на заседании методической комиссии ИББМ от 29 августа 2020 г., протокол N 1.