МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет
(факультет / институт / филиал)
УТВЕРЖДАЮ:
Декан Матросов В.В.
«» 2017 r
Рабочая программа дисциплины
таоо тал программа дисциплины
Аппаратные средства вычислительной техники
(наименование дисциплины (модуля))
Уровень высшего образования
бакалавриат
(бакалавриат / магистратура / специалитет)
Направление подготовки
020302 «Фундаментальная информатика и информационные технологии»
(указывается код и наименование направления подготовки / специальности)
Направленность образовательной программы
Информационные системы и технологии
(указывается профиль / магистерская программа / специализация)
Квалификация (степень)
квалификация (степень) бакалавр
(бакалавр / магистр / специалист)
Форма обучения
(очист / очист / очист)
(очная / очно-заочная)

Нижний Новгород

Год 2017

1. Место и цели дисциплины в структуре ОПОП

Дисциплина относится к вариативной части профессионального цикла ОПОП и обязательна для освоения на третьем году обучения в пятом семестре.

Целью освоения дисциплины

«Аппаратные средства вычислительной техники» является приобретение знаний о цифровых устройствах (включая элементную базу), на основе которых строятся цифровые вычислительные системы, в том числе системы, используемые в научных и экспериментальных исследованиях, в системах связи, телекоммуникационных системах и в системах автоматического управления.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (Код компетенции, этап формирования)	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
ОПК-2 этап формирования базовый	O1(OПК-2) — обладание способностью применять в профессиональной деятельности современные языки программирования и языки баз данных, методологии системной инженерии, системы автоматизации проектирования, электронные библиотеки и коллекции, сетевые технологии, библиотеки и пакеты программ, современные профессиональные стандарты информационных технологий.
ОПК-4 этап формирования базовый	O1(OПК-4) — обладание способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.
<i>ПК-5</i> этап формирования базовый	O1(ПК-5) — обладание способностью критически переосмысливать накопленный опыт, изменять при необходимости вид и характер своей профессиональной деятельности.

3. Структура и содержание дисциплины

Объем дисциплины составляет 3 зачетных единицы, всего 108 часов, из которых 64 часа составляют контактную работу обучающегося с преподавателем (32 часа занятия лекционного типа, 32 часа занятия лабораторного типа), в том числе 1 час — мероприятия текущего контроля успеваемости, 43 часа — самостоятельная работа обучающегося.

	В том числе																	
													заим			н ра	0CH,	
Наименование и краткое содержание разделов и тем дисциплины (модуля), форма промежуточной		<u> </u>		ствии с преподавателем), часы из них							цег							
		Всего (часы)		Занятия лекционного типа		Занятия семинарского типа		Занятия лабораторного типа		типа	Всего			Самостоятельная ра бота обучающегося, часы				
аттестации по дисциплине (модулю)	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное	Очное	Очно-заочное	Заочное
Тема 1. Общее представление о принципе действия, функциональном составе и архитектуре цифровых вычислительных систем.	1			1									1					
Тема 2. Функциональные узлы комбинационного типа.	6	4		6									6				4	
Тема 3. Функциональные узлы последовательного типа (автоматы с памятью).	8	8		8									8				8	
Тема 4. Запоминающие устройства.	4	6		4									4				6	
Тема 5. Микропроцессоры: архитектура и структурное построение.	23	12		7						16			23				12	
Тема 6. Микропроцес- сорные системы.	20	13		4						16			20				13	
Тема 7. Обзор микропроцессорных систем и средств вычислительной техники.	2			2									2					
В т.ч.текущий контроль	1									1			1					
Промежуточная аттестация — зачёт																		

4. Образовательные технологии

Изучение дисциплины сопровождается лабораторным практикумом, в рамках которого осваивается система автоматического проектирования (САПР), направленная на разработку программного обеспечения для систем реального времени. Для этой цели используются соответствующая среда разработки на персональном компьютере и подключённая к компьютеру целевая система в виде платы с микроконтроллером и устройствами ввода/вывода. Освоение САПР и её взаимодействия с целевой системой происходит под руководством преподавателя.

Выполняются две лабораторные работы:

Наименование лабораторной работы	Раздел дисциплины
Знакомство с микроконтроллером серии MSP-430	5
Первые шаги в программировании микроконтрол- лера серии MSP-430	5, 6

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся обеспечена учебными пособиями и методическими разработками для лабораторных работ. Учебно-методические разработки содержат необходимый для контроля освоения дисциплины перечень вопросов, по ответам на которые в процессе выполнения лабораторных работ производится контроль приобретённых знаний. Кроме того каждый студент оформляет отчёт по выполненной работе, в котором содержится объяснение технологии программирования целевой системы с привлечением преподаваемого в лекциях материала.

6. Фонд оценочных средств для промежуточной аттестации по дисциплине

6.1. Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования

Дисциплина «Аппаратные средства вычислительной техники» участвует в формировании компетенций ОПК-2, ОПК-4 и ПК-5. Формирование компетенций распределено по всем разделам лекций. В результате обучающийся приобретает способность:

- (1) использовать современные инструментальные и вычислительные средства;
- (2) эффективно применять базовые математические знания и информационные технологии при решении проектно-технических и прикладных задач, связанных с развитием и использованием информационных технологий;
- (3) разрабатывать и реализовывать процессы жизненного цикла информационных систем, программного обеспечения, сервисов систем информационных технологий, а также методы и механизмы оценки и анализа функционирования средств и систем информационных технологий.

Компетенции ОПК-2, ОПК-4 формируются также в ходе выполнения лабораторных работ. Компетенции оцениваются по ответам на контрольные вопросы при допуске к лабораторным работам и в ходе их выполнения, а также по письменному отчёту, завершающему выполнение лабораторной работы. Заключительная оценка качества формирования компетенций происходит по итоговому «зачтено» или «не зачтено».

Оценка сформированности компетенций происходит в соответствии с таблицей индикаторов.

Индика- торы	ОЦЕНКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ									
компе-	плохо	неудовле- твори- тельно	удовле- твори- тельно	хорошо	Очень хорошо	отлично	превос- ходно			
Знания	материала.	ний ниже минимальных требований. Имели место грубые ошиб-ки.	Минимально допустимый уровень знаний. Допущено много негрубых ошибки.	Уровень знаний в объеме, соответствующем программе подготовки. Допущено несколько негрубых ошибок.	соответст- вующем про- грамме под- готовки. До- пущено не-		Уровень знаний в объеме, превышающем программу подготовки.			

<u>Умения</u>	минималь-	ные умения. Имели место	стрированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания	Продемон- стрированы все основ- ные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания,	объеме, но некоторые с	стрированы все основ- ные умения, решены все основные задачи с отдельными несущест- венными недочетами,	Решены все основные задачи. Вы- полнены все задания, в полном объеме без
Навыки	Невозмож- ность оце- нить нали-	При решении стандартных задач не продемонстрированы базовые навыки. Имели место грубые ошибки.	но не в полном объеме. Имеется минимальный набор навыков для решения стандартных задач с некоторыми недочетами	в полном объеме, но некоторые с недочетами. Продемонстрированы базовые навыки при решении стандартных задач с некоторыми недочетами.	Продемонстрированы базовые навыки при решении стандартных задач без ошибок и недочетов.	выполнены все задания в полном объеме. Продемонстрированы навыки при решении нестандартных задач без ошибок и недочетов.	Продемон- стрирован творческий подход к решению нестандарт- ных задач.
Шкала оценок по проценту правильно выполненных контрольных заданий	0 – 20 %	20 – 50 %	50 – 70 %	70-80 %	80 – 90 %	90 – 99 %	100%

6.2. Описание шкал оценивания

Зачтено	«Зачтено» ставится в том случае, если студент на понятийном уровне может дать ответы на вопросы, сформулированные в п.п. 6.3.
Не зачтено	В противном случае ставится «Не зачтено».

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине, характеризующих этапы формирования компетенций

Для оценивания результатов обучения в виде <u>знаний</u> используется правильность ответов на следующие вопросы:

- 1. Теоремы и аксиомы алгебры логики.
- 2. Принцип использования полупроводниковых диодов для выполнения логических операций.
- 3. Принцип использования транзисторов для выполнения логических операций.
- 4. Перечислить типы базовых логических элементов, в которых логические операции выполняются с помощью диодов.
- 5. Перечислить типы базовых логических элементов, в которых логические операции выполняются с помощью биполярных транзисторов.
- 6. Перечислить типы базовых логических элементов, в которых логические операции выполняются с помощью полевых транзисторов.
- 7. Полный дешифратор и его роль в выполнении логических операций.
- 8. Программируемые логические матрицы (ПЛМ) и их структурное построение.

- 9. Логика работы одноразрядного двоичного сумматора.
- 10. Принцип построения матричного умножителя.
- 11. Мультиплексор и его роль в выполнении логических выражений.
- 12. Основные свойства и область применения комбинационных схем.
- 13. Основные отличительные черты устройств последовательного типа (цифровых автоматов).
- 14. Признаки, по которым классифицируются триггеры. Разновидности триггеров.
- 15. Двоичные счетчики и их разновидности.
- 16. Регистры их разновидности и структурный состав.
- 17. Принцип работы регистрового арифметическо-логического устройства.
- 18. Структурный состав оперативного запоминающего устройства (ОЗУ).
- 19. Статическое ОЗУ. Статические запоминающие элементы и структурное построение ОЗУ.
- 20. Динамическое ОЗУ. Динамические элементы памяти и механизм использования в динамическом ОЗУ.
- 21. Машина состояний класса 3 (автомат Мура) и область его применений.
- 22. Устройство управления выполнением программы на базе ПЛМ и его функционирование в составе центрального процессора (ЦП).
- 23. Обобщенная архитектура (регистровая модель) ЦП.
- 24. В чём состоит специфика применения регистров адреса и регистров данных в ЦП. Что понимается под режимами адресации, применяемыми в командах ЦП.
- 25. Упрощенный алгоритм работы ЦП.
- 26. Структурное построение процессора Intel-8080 и средства обеспечения его связи с микропроцессорной системой.
- 27. Формат команд (ЦП).
- 28. Особенности формата команд для CISC и RISC архитектур.
- 29. Основные черты ЦП с регистрово ориентированной (RISC) архитектурой.
- 30. Конвейер операций и его реализация в RISC процессорах.
- 31. Микросистема на базе магистрального интерфейса. Машина фон-Неймана.
- 32. Микросистемы с гарвардской архитектурой. Структура цифрового процессора сигналов (ЦПС) семейства ADSP-21xx.
- 33. Связь ЦПС ADSP-21xx с внешними по отношению к нему компонентами МП-системы.
- 34. Привести примеры, иллюстрирующие применение CISC и RISC архитектур в современных микропроцессорах и МП-системах.

Для оценивания результатов обучения в виде <u>умений</u> и <u>владений</u> используется проверка способности обучаемого пользоваться инструментарием системы автоматического проектирования IDE Embedded Workbench компании IAR Systems и механизмом размещения программного обеспечение в целевой системе.

6.4. Типовые контрольные задания

формулируются как совокупность нескольких разных по сложности вопросов, перечисленных в п.п. 6.3.

Пример задания:

- -Принцип использования полупроводниковых диодов для выполнения логических операций.
- Принцип работы регистрового арифметическо-логического устройства.
- Основные черты ЦП с регистрово ориентированной (RISC) архитектурой.

В данном примере первый вопрос касается способа выполнения логических операций и относится к **Teme 1** содержания дисциплины (п. 3) «Общее представление о принципе действия, функциональном составе и архитектуре цифровых вычислительных систем». Второй – к **Teme 3** «Функциональные узлы последовательного типа (автоматы с памятью)». Третий – к **Teme 5** «Микропроцессоры: архитектура и структурное построение».

6.5. Методические материалы, определяющие процедуры оценивания

Процедура оценивания знаний реализуется в виде ответа на сформулированные в билетах вопросы, построенные в форме контрольных заданий и сформулированные в соответствии с п.п. 6.4. На предшествующей итоговому зачету стадии обучающийся должен сдать все лабораторные работы и быть способным ответить на содержащиеся в методических указаниях контрольные вопросы по каждой из лабораторных работ.

7. Учебно-методическое и информационное обеспечение дисциплины

) Основная литература

- 1. Шкелев Е.И Аппаратные средства вычислительной техники: Учебное пособие. Нижний Новгород: Изд-во Нижегородского государственного унивенситета, 2011. 222 с.(1)
 - http://www.rf.unn.ru/rus/chairs/k7/Tutorials.php https://search.rsl.ru/ru/record/01005114757
- 2. Шкелев Е.И. Электронные цифровые системы и микропроцессоры: Учебное пособие. Нижний Новгород: Изд-во Нижегородского государственного унивенситета, 2004. 153 с.(1)
- 3. Каган Б.М. Электронные вычислительные машины и системы: Учебное пособие для вузов. М.: Энергоатомиздат, 1990.(9)
- 4. Микропроцессоры. В 3-х кн.; Под ред. Л.Н.Преснухина.- М.: Высшая школа. 1986.(15)

б) Дополнительная литература

- 1. Дэвид М. Харрис, Сара Л. Харрис. Цифровая схемотехника и архитектура компьютера. / Пер. англ. Imagination Technologies. М.: ДМК Пресс, 2017. 772 с.: ил.
- 2. Угрюмов Е.П. Пректирование элементов и узлоы ЭВМ. М: Высшая школа, 1987. 317 с.(1)
- 3. Корнеев В.В., Киселев А.В. Современные микропроцессоры. Изд.3. перераб. и доп. СПб: БХВ-Петербург, 2003.-448 с.
- 4. Калабеков Б.А., Мамзелев И.А. Цифровые устройства и микропроцессорные системы.-М.: Радио и связь 1967. 397 с. (1)

в) Программное обеспечение и Интернет ресурсы

- 1. Интегрированная среда разработки (IDE) компании IAR Systems. http://processor.wiki.ti.com/index.php/IAR Embedded Workbench Kickstart for MS P430 Release Notes.
- 2. Практикум «Знакомство с микроконтроллером серии MSP-430». http://www.unn.ru/resources.html, per №953.15.04 от 30.04.15. Файл «znakomstvo MSP 430.pdf»

3. Практикум «Первые шаги в программировании микроконтроллера серии MSP-430». http://www.unn.ru/resources.html, per №953.15.04 от 30.04.15.Файл «First steps MSP 430.pdf»

8. Материально-техническое обеспечение дисциплины

Для изучения дисциплины используется лабораторный комплекс из 8 рабочих мест. Каждое рабочее место имеет персональный компьютер с интегрированной средой разработки (IDE) Embedded Workbench компании IAR Systems и подключенной к компьютеру целевой системой на базе микроконтроллера серии MSP430 компании Texas Instruments.

Программа составлена в соответствии с требованиями ФГОС ВПО/ВО с учетом рекомендаций и ОПОП ВПО по направлению 020302 «Фундаментальная информатика и информационные технологии».

Автор	Е.И. Шкелев	-
Рецензент(ы)		_С.Н. Менсов
Заведующий кафедрой		Е.С. Фитасов

Программа одобрена на заседании методической комиссии Радиофизического факультета. Протокол N 04/17 от «30» августа 2017 года.